
DESIGN AND FORM FINDING OF 
FLEXIBLY FORMED CONCRETE SHELL STRUCTURES

Diederik Veenendaal

DISS. ETH NO. 24190





DISS. ETH NO. 24190

DESIGN AND FORM FINDING OF
FLEXIBLY FORMED CONCRETE SHELL STRUCTURES

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH Zurich
(Dr. sc. ETH Zurich)

presented by

DIEDERIK VEENENDAAL

MSc., Del� University of Technology
born 05.02.1982

citizen of the Netherlands

accepted on the recommendation of

Prof. Dr. Philippe Block
Prof. Mark West

Prof. Dr.-Ing. Kai-Uwe Bletzinger
Prof. Dr. Kristina Shea

Dr. Bernhard�omaszewski

2017



�esis supervisor:

Prof. Dr. Philippe Block ETH Zurich

Co-examiners:

Prof. Mark West Massachusetts Institute of Technology
Prof. Dr.-Ing. Kai-Uwe Bletzinger Technische Universität München
Prof. Dr. Kristina Shea ETH Zurich
Dr. Bernhard�omaszewski Disney Research Zurich

Chair of doctoral exam:

Prof. Annette Spiro ETH Zurich

© Diederik Veenendaal, 2017.

No part of this doctoral thesis may be reprinted or
reproduced or utilized in any form or by any
electronic, mechanical, or other means, now known
or herea�er invented, including photocopying and
recording, or in any form of information storage or
retrieval system, without permission in writing from
the author. ETH Zurich maintains the right to make
the doctoral thesis publicly available and to archive
it, and to provide scienti�c and public institutions
with abstracts or copies (Art. 34, Par. 5, Ordinance
on Doctoral Studies ETH Zurich of 1 July 2008).

All copyrighted material is used to serve as an
explanation, a reference or illustration, and the
extent of its use is justi�ed for that purpose (Art. 25,
Par. 1, Federal Act on Copyright and Related Rights).

A catalogue record for this doctoral thesis is
available from ETH-Bibliothek.

ISBN: 978-3-906327-36-5
DOI: 10.3929/ethz-a-010831669

Typeset in Minion Pro and Myriad Pro. Printed and
bound in the Netherlands by Proefschri�maken.nl.

http://www.block.arch.ethz.ch/brg/people/philippe-block
https://architecture.mit.edu/faculty/mark-west
https://www.st.bgu.tum.de/en/mitarbeiterinnen/kai-uwe-bletzinger/
http://www.edac.ethz.ch/the-group/people-new/shea--kristina--prof--dr-.html/
https://www.disneyresearch.com/people/bernhard-thomaszewski/
http://www.library.ethz.ch/en/
https://www.proefschriftmaken.nl/en/


To you, dear reader.
May this work delight and enlighten, rather than confuse and frustrate
you.





Preface

Several events have heavily shaped and directed the present work.

In 2010, I advised Zwarts & Jansma Architects in Amsterdam, on their competition
entry for the ARCWildlife Crossing. �eir proposal, Landshape, was a large cable-net
and fabric-formed, hyperbolic paraboloid, thin-shell bridge. Although I was invited
for my knowledge on fabric formworks, the discussion soon turned to the shell itself.
�e structural engineers had designed it with six large, parallel arches, instead of
relying on the double curvature of the shell with its inherent sti�ness. Unable to
objectively argue the point, I went home and resorted to the physical model in Figure
1: a Pringles potato chip. Without knowing the outcome for certain, the �nal result
delighted and surprised myself and the architects as well. It immediately revealed
the potential of good structural form.

Figure 1: Landshape competition entry (Torsing et al. 2015, 2012), and my physical model: a
Pringles potato chip supporting 250 times its own weight through two point loads at its

extremities.

When my supervisor, Prof. Philippe Block, invited me in 2011 to serve as co-editor
for a book project with Prof. Sigrid Adriaenssens, I was essentially a layperson in
its topic of shells. By the end, the book “Shell Structures for Architecture” became a
joint e�ort of some thirty-seven authors, both architects and engineers, academics
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and professionals (Adriaenssens et al. 2014b). �e publication touches on many
topics relevant to shells, and through my editorial work and co-authorship, I learned
a great deal on these subjects. It deepened my understanding, but did not diminish
my awe, of that simple Pringle model. By working on form-�nding methods, for the
book, and my own thesis, I was able to meet with authorities in this �eld, such as
Prof. Klaus Linkwitz and Prof. Hans-Jörg Schek (Figure 2). �eir pioneering work
from the 1970s pervades this thesis, most noticeably in the use of their notation.

Figure 2: Awkward photos of the visits to the Block Research Group by Prof. Klaus Linkwitz,
2012, and Prof. Hans-Jörg Schek, 2013.

Back in 2010, at the annual symposium of the International Association for Shell and
Spatial Structures (IASS) in Shanghai, Tom van Mele and Prof. Block presented a
paper on fabric formworks for shells (VanMele & Block 2010). �e presentedmethod
calculates the required forces within a given discrete network for a set of applied
loads i.e. the wet concrete, and is essential to this thesis. �e practicality of producing
a precise stress distribution within a fabric membrane became a point of debate. �is
strengthened the concept of using cables instead of fabric, as the individual cables
can be more easily and precisely controlled, measured and corrected.

In late 2012, Prof. Block was, at the invitation of the Swiss Federal Institute of Tech-
nology (EMPA), then able to propose the actual implementation of this idea under
real-life conditions. An apartment, called HiLo, featuring a cable-net and fabric-
formed roof, will be built within EMPA’s NEST building. During my tenure as project
coordinator for its early and �nal design stages (2013–2015), I was also responsible
for optimizing and analyzing the roof geometry. �is would not have been possible
without the knowledge that I had gained frommy supervisor, our research group, the
book’s co-authors, and the many works produced by those in the IASS throughout
the past decades.

�e present thesis is my contribution to this great body of work, and our shared
endeavour to produce elegant, expressive and e�cient lightweight structural form.
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Abstract

Concrete shells are e�cient structural systems to cover large areas without the need
for intermediate supports. Historically, their shapes were derived frommathematical
equations, with some of the thinnest described by the hyperbolic paraboloid, or
hypar. Unfortunately, the relative cost of formwork for shells has increased such that
they are no longer built in any signi�cant number.

�e thesis explores the concept of casting large span, anticlastic concrete shell struc-
tures with the aid of a �exible formwork, speci�cally a prestressed cable-net and/or
fabric formwork. Such a system consists of lightweight, inexpensive and widely
available cables and fabrics, requires little to no falsework, allowing for unobstructed
access underneath, and does not rely on skilled labour nor on the use of release
agents for demoulding.

A �exible formwork allows a wider range of shapes to be constructed compared to
traditional, mathematically described shells, with up to 25 to 40% lower cost than
conventional timber formwork, independent of the span. �is creates a potential
to revive shells and design them such that they are structurally more e�cient and
architecturally less constrained.

A design process for �exibly formed shells is developed that consists of the followings
steps: generating a shell through initial form �nding and (possibly) subsequent shape
and thickness optimization; patterning and �attening the corresponding formwork
surface; calculating loads from the applied concrete; calculating the resulting stresses
in the formwork due to those loads; materializing the formwork and calculating the
prestresses prior to casting, including stress compensation of the cutting patterns;
and, analyzing the formwork frame. �e work�ow aims to keep computational cost
manageable, to allow for implementation in a parametric design or optimization
model.
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�e process is informed by: an extensive review and comprehensive comparison of
form-�nding methods; an overview of constrained form-�nding methods based on
least squares; and, a full description of recommendations issued by the IASS, in order
to deal with nonlinearities in the analysis of thin concrete shells by using simple
reduction factors. �e review of form-�nding methods itself leads to the description
of a generic form-�nding method with linear �nite elements that encompasses
existing ones, and allows for the comparison of their computational performance.

Based on an implementation of the design process, a parametric study is carried out
for a simple square hyperbolic paraboloid. It shows that, in this case, a fabric and a
cable-net formwork can be applied for spans of up to almost 10 to 15 m and up to
almost 20 to 40 m, respectively.

�e computational work is veri�ed through the construction and measurement of
one fabric-formed, and two cable-net and fabric-formed shell prototypes. �ese
are measured, which establishes that deviations for the cable-net and fabric-formed
shells are well below accepted tolerances, while the fabric-formed shell reveals that
further work is necessary on the detailing and fabrication of its cutting patterns, and
methods to measure its stress state.

�e main case study is the structural design of a �exibly formed shell roof of NEST
HiLo, a duplex penthouse apartment to be completed in 2018 in Dübendorf, Switzer-
land. �is unique shell has spans in the range of 6 to 9 m and a surface area of 157
m2.

�is work contributed to the approval of a building permit for this structure, slated
to be the world’s �rst computationally form-found, permanent thin concrete shell
structure.
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Zusammenfassung

Betonschalen sind hochleistungsfähige Tragwerke, die grosse Flächen ohne innen-
liegende Stützen überspannen können. Der Entwurf traditioneller Schalenarchitektur
basiert auf mathematischen Flächen, wie etwa das hyperbolische Paraboloid (Hypar),
welches zu den dünnwandigsten Schalentypen zählt. Bedauerlicherweise werden
Betonschalen heute nur noch vereinzelt gebaut, da sich die relativen Kosten für deren
Schalung erhöht haben.

Die vorliegende Dissertation untersucht �exible Schalungssysteme aus vorgespan-
nten Seilnetzen und/oder Textilien zur Herstellung antiklastischer Betonschalen mit
grossen Spannweiten. Ein solches System besteht aus leichtgewichtigen, kostengün-
stigen und weitgehend verfügbaren Drahtseilen und Textilien, ist weder auf spezielle
Fachkrä�e noch auf Trennmittel für die Entformung angewiesen und erfordert wenig
bzw. gar kein Lehrgerüst, was den ungehinderten Zugang unterhalb der Schalung
ermöglicht.

Im Vergleich zu traditionellen, mathematisch de�nierten Schalen erlaubt ein �ex-
ibles Schalungssystem zudem einen grösseren Spielraum in der Formgebung und
weist, unabhängig von der Spannweite, etwa 25 bis zu 40% geringere Kosten als kon-
ventionelle Holzschalungen auf. Vor diesem Hintergrund gewinnen Betonschalen
wieder an Bedeutung, sind tragstrukturell e�zienter und erschliessen gleichzeitig
ein vielfältigeres Formenspektrum.

Im Rahmen der vorliegenden Dissertation wurde ein Arbeitsablauf für den En-
twurf und die Herstellung �exibel geformte Schalen entwickelt, welcher wie folgt
aufgebaut ist: Erzeugung der Schalenform mittels Methoden zur Form�ndung und
gegebenenfalls anschliessender Form- und Querschnittsoptimierung; Zuschnittser-
mittlung und Abwicklung der entsprechenden Schalungsober�ächen; Berechnung
der Lasteinwirkung des Betonau�rags und der resultierenden Spannungen in der
Schalung infolge der Lasten; Dimensionierung der Schalung und Berechnung der
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Vorspannungskrä�e vor dem Betonierprozess unter Berücksichtigung der Span-
nungskompensation durch das Zuschnittmuster; und letztlich, Tragwerksanalyse
und Bemessung des Schalungsrahmens. Dieser Arbeitsablauf zielt darauf ab den
Rechenaufwand der Einzelschritte zu minimieren, um deren Anwendung innerhalb
eines parametrischen Entwurfs- und Optimierungsmodels zu ermöglichen.

Die Entwicklungen entlang dieser Prozesskette basieren auf einer ausführlichen
Literaturrecherche und einer umfangreichen Vergleichsstudie unterschiedlicher
Form�ndungsmethoden, einemÜberblick über Form�ndungsmethodenmit Zwangs-
bedingungen basierend auf der Methode der kleinsten Quadrate und Richtlinien
der IASS hinsichtlich der Verwendung einfacher Reduktionsfaktoren bei nichtlin-
earen Analyseverfahren für dünnen Betonschalen. Die Gegenüberstellung von un-
terschiedlichen Form�ndungsmethoden ermöglicht die De�nition einer allgemein
formulierten Form�ndungsmethode mit linearen �niten Elementen, welche vorhan-
dene Methoden inkludiert und einen Vergleich der jeweilig benötigten Computer-
rechenzeit erlaubt.

Basierend auf einer Implementierung des angeführten Entwurfs- und Analyse-
prozesses, wird eine parametrische Studie für ein einfaches quadratisches hyper-
bolisches Paraboloid durchgeführt. Damit wird exemplarisch demonstriert, dass die
Textil- und Seilnetzschalung, für Spannweiten von 10 bis 15, beziehungsweise von 20
bis 40 m, verwendet werden kann.

Die entwickelten rechnergestützten Methoden werden durch die Konstruktion und
Vermessung von drei prototypischen Betonschalen überprü�, wovon eine mittels
Textilschalung und zwei mittels kombinierter Seilnetz-Textilschalung hergestellt
werden. Die durchgeführten Messungen zeigen, dass die Toleranzen der Seilnetz-
Textilschalung deutlich unter den üblichen Messwerten liegen, wohingegen die
Messwerte für die reine Textilschalung auf weiteren Entwicklungsbedarf hinsichtlich
der Detaillierung und der Herstellung des Schnittmusters und der Messverfahren
zur Spannungsverteilung hinweisen.

DieHauptfallstudie dieserArbeit umfasst denTragwerksentwurf der �exibel geformten
Dachschale des NEST HiLo, einem zweigeschossigen Penthouse Apartment in
Dübendorf in der Schweiz, welches 2018 fertiggestellt wird. Die Spannweite dieser
einzigartigen Schale beträgt zwischen 6 und 9 m und hat eine Ober�äche von 157
m2. Die vorliegende Dissertation hat zur Abnahme der Baugenehmigung dieses
Flächentragwerks beigetragen, welche die weltweit erste, durch digitale Form�nd-
ungsmethoden entwickelte, Betonschale werden wird.
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Part I

Introduction
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�ere are no limits to the shape of concrete. Enormous freedom lies
before the designer, an astonishingly vast �eld. It is astonishing that in
fact very little use is made of this freedom. It is astonishing that the great
majority of concrete buildings follow the typical shapes of wood and steel,
namely the straight beam, the �at slab and the plane wall. [. . . ] �e
problem of building technique is another impediment. Curved formwork
is complicated and expensive, at least in the traditional sense.

— Heinz Isler, 1981





CHAPTER ONE

Introduction

“�ere are no limits to the shape of concrete.” Isler (1981), a renowned builder of
thin concrete shells, spoke of the potential of this initially �uid material. He singled
out several reasons why this potential, to his mind, was not being realized, which
included the complexity and cost of traditional formwork. In fact, concrete shells
are no longer being built in any signi�cant number. Isler himself was o�en referred
to as an exception to this development, as he continued designing and engineering
elegant shell structures through his methods of form �nding. With his passing in
2009, the future and relevance for such structures has become even more uncertain.

1.1 Motivation

Several developments and advances in architecture and engineering could allow
for concrete shells to return in greater numbers. At the same time, the structural
e�ciency of shells allows for savings in material use, leading to associated reductions
in energy use and carbon emissions1. A major obstacle to shell construction is form-
work complexity and cost. �is could be addressed by a �exible formwork, speci�cally
a prestressed cable-net and/or fabric formwork. Such a formwork o�ers greater free-
dom than conventional systems to construct and therefore design structural forms.
As such, it can be a straightforwardmeans to realize e�cient shell geometries derived
from form �nding. �e following section expands on these points in more detail.

1Subsection 1.1.5 is based on co-authored publications Hawkins et al. (2016) and Block et al. (2017).
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1.1.1 Freeform design

Modern trends in architecture have led to forms that, in many ways, are more com-
plicated than ever before. Advances in digital modelling have allowed for such
complexity, as relatively simple operations can easily produce curves that in turn
de�ne three-dimensional shapes. Computer-based design has now become com-
monplace in architectural practice, a development since the early 1990s, referred to
as the digital turn in architecture (Carpo 2012).

Early works in this period, o�en characterized by double curvature, were referred
to as blob architecture. �is style is said to have been initiated by Lars Spuybroek’s
and Kas Oosterhuis’ Water Pavilion and epitomized by Frank Gehry’s Guggenheim
Museum (Figure 1.1). �e term was coined by Greg Lynn in 1995, based on the
acronym for “binary large objects”, referring to the digital nature of such architecture.
O�en contracted to blobitecture, the word has become derogatory to some, alluding
to shapeless masses devoid of meaning, instead of binary data (Sa�re 2002).

Figure 1.1:Water pavilion, designed in two connected parts, by Kas Oosterhuis, ONL and by
Lars Spuybroek, NOX, Netherlands, 1993-1997, and the Guggenheim Museum Bilbao by

Frank Gehry, Spain, 1997.

More recently, Parametricism, coined by Patrik Schumacher in 2008, is also applied
to this style and period, including successive works. It can be seen as an attempt to
provide a deeper rationale or logic for this type of architecture, but the term is even
more controversial. It “is neither a style nor amovement, butmerely a now ubiquitous
21st-century technology coupled with a stylistic preference for topologically derived
(smooth) digital surfaces” (Gage 2016). Like blobitecture, the logic for such surfaces
is not obvious to the critic, and becomes the source of their derision.

To realize these forms, whatever their reason, much time and e�ort is being invested
in the development of new, o�en computer-controlled, fabrication strategies. �e
general digitization of manufacturing is said to constitute a third industrial revolution
by Markillie (2012).
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Figure 1.2: Heydar Aliyev Center by Zaha Hadid Architects, Azerbaijan, 2012, and Louis
Vuitton Foundation by Frank Gehry, France, 2014.

�e unconstrained nature of computer-aided design, now combined with digital fab-
rication, has given an apparent promise of complete geometrical freedom. Arguably,
this has led to forms that are not only geometrically complex, they require awkward
structural solutions, useful only to extravagant landmark or signature buildings.

For example, the 2012 Heydar Aliyev Center is said to require 5.500 tons of steel
to cover 15.500 m2 of surface area, or about 350 kg/m2. �e 2014 Louis Vuitton
Foundation contains 15.000 tons of steel to cover 12.000 m2, or about 1250 kg/m2.
Its sail-like glazed panels alone contain 300 kg/m2 of steel (Figure 1.2).

By comparison, the shape of the gridshell covering the British Museum Great Court
was derived by computational form �nding. As a result of taking structural consider-
ations in mind, it weighs a mere 130 kg/m2, of which 80 kg/m2 is the steel structure
(Figure 1.3).

Moreover, while the latter steel and glass gridshell forms a transparant atrium roof,
the steel structures of Heydar Aliyev Center and Louis Vuitton Foundation are
mostly hidden from view, and clad with glass-�bre reinforced concrete or polymer.
Block (2016) argues that “architecture has failed if it is merely a freeform skin with
a substructure, like the �at building fronts propped up from behind on the set of a
Western, where it is only an image lacking materiality”.

1.1.2 Concrete shell structures

�in-shell concrete structures are structurally e�cient systems for covering large
areas. �ey rely on double curvature to produce resistance to load by transferring
forces perpendicular to their surface to in-plane stresses. �e perceived wasteful
nature of current architectural design has led to a review of the merits of such
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Figure 1.3: British Museum Great Court roof by Foster + Partners, London, UK, 2000, and
Los Manantiales Restaurant by Félix Candela, Xochimilco, Mexico, 1958.

structures. Rippmann (2016) remarks that they “share a similar formal language of
�uidity and curvilinearity [but despite this,] do not resemble each other in structural
performance.” However, this distinction may be at the verge of dissolving. At the
2012 Venice Biennale of Architecture, Zaha Hadid Architects displayed the works
of shell builders Heinz Isler and Félix Candela, writing that “[the] more our design
research and work evolved on the basis of algorithmic form generation, the more we
learned to appreciate the work of [such] pioneers”.

�e 42 m span Los Manantiales restaurant by Candela, arguably one of the most
elegant concrete shells, weighed 100 kg/m2 for most of its surface (Figure 1.3). �is is
in the same order of magnitude as the weight of the aforementioned steel structures,
but that excluded the cladding.

Any interest in concrete shells today appears to run counter to historical develop-
ments. �e golden era of concrete shells, when tens of thousands were built around
the world, was between the 1920s and 1960s. Since then, their construction has
seen a sharp decline, with the minor exceptions of airformed concrete domes and
slipformed concrete cooling towers. �e wish among some engineers and scientists
to revive them has been marked by publications such as “Do concrete shells have
a future?” (Schlaich & Sobek 1986) and “Do concrete shells deserve another look?”
(Meyer & Sheer 2005).
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Commonly cited reasons for their disappearance are (Cassinello et al. 2010, Isler
1995, Meyer & Sheer 2005, Schlaich & Sobek 1986):

1. limitations of traditional shell geometries, and contrary architectural trends;

2. competition with prefabricated and mass-produced systems;

3. competitionwith newmaterials, tensionedmembrane roofs and steel or timber
gridshells; and,

4. the cost of concrete formwork and associated labour;

As argued, contemporary trends in architecture should allow for more concrete shells
to be realized, where the concrete is not (only) the cladding, but the structural system
as well. Clearly, the design space between traditional shells, which were limited to
a speci�c set of mathematical shapes, and freeform design needs to be explored to
arrive at forms that �t within these trends, yet display a structural logic as well.

Still, it should be accepted that concrete shells cannot fully regain their original
dominance, and will have their place among other lightweight systems such as
membrane roofs and gridshells. Instead, it should be clari�ed when a concrete shell
is appropriate.

For example, membrane roofs are not always applicable due to requirements related
to thermal or acoustical insulation, �re safety, daylight entry, integration and support
of various building systems and so on. Both timber and steel gridshells are generally
lighter than concrete shells. However, they are not always more economical, for
example due to local buckling of the individual steel members and related sizing
requirements (Muttoni et al. 2013). �e carbon footprint of steel is substantially
higher than that of concrete. Furthermore, architectural, spatial and/or functional
constraints may require a monolithic, continuous, smooth surface that concrete
naturally provides, while avoiding complicated detailing. A concrete shell can also
integrate multiple functions in ways that a membrane roof or gridshell cannot. For
example, the thermal mass of a large unobstructed internal concrete surface can be
used to passively reduce heating and cooling demand (Aste et al. 2009), as well as
actively as a radiant heating and cooling panel.

�e �nal point, the cost of formwork, might be tackled by considering a fabric
formwork instead of conventional timber formwork.
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Figure 1.4: Columns, and carry-on travel bags holding their formwork, for Casa Dent in
Culebra, Puerto Rico (West 2004). Free-standing 10 × 1.7 × 0.3 m fabric-formed wall,

University of Sydney, Australia (Redjvani &Wheen 1995).

1.1.3 Fabric formworks

Fabric formwork is a building technology that involves the use of structural mem-
branes as the main contact material for concrete moulds. Unlike traditional form-
works, the material is highly �exible and can de�ect under the pressures of fresh
concrete. �e resulting forms exhibit curvature as well as excellent surface �nishes
that are generally not associated with concrete structures.

�e history of �exible formworks is more than a century long (Block & Veenendaal
2013, Veenendaal 2016, Veenendaal et al. 2011), withmany recent and ongoing develop-
ments (Hawkins et al. 2016). However, no substantial work into their computational
form �nding exists (Veenendaal & Block 2012a).
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A �exible formwork with fabric shuttering o�ers several immediate advantages
(Veenendaal 2016). It has the appeal of simplicity, requiring nothing more than the
application of fresh concrete to some kind of fabric or �exible membrane. By simply
suspending or prestressing a cable net or fabric within a supporting frame, then
either casting concrete, rendering or spraying mortar or concrete, a wide range of
regular and irregular shapes can be cast quickly and cost-e�ectively. It can also be
patterned and in�ated by concrete pumping as in marine applications, or by air as in
pneumatically formed shells.

�e fabric is easy to strip, requiring no release agents, but can be le� in place just
as well, even protecting the concrete. �e permeability of the fabric will a�ect the
quality of the surface concrete, reducing the amount of air voids and blowholes,
and therefore improve overall durability. In many examples, no skilled labour or
sophisticated equipment are needed. As the fabric is lightweight, compact, cheap
and reusable, fabric formworks o�er savings in the amount of form- and falsework
material and thus in terms of transportation, storage and labour. �is is dramatically
seen in column and wall formworks, which are able to resist up to 10 m of concrete
pressure while requiring minimal material and limited stabilization (Figure 1.4).

Figure 1.5: Fabric-formed, 4 m span, concrete truss (West 2006).

�e sculptural possibilities of these methods can also be used to create structurally
e�cient concrete designs, thus leading to further savings in the amount of concrete,
reinforcement, and subsequently in embodied energy and greenhouse gas emissions
(Figure 1.5).
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1.1.4 Flexibly formed shells

If the architectural program calls for a concrete shell, then a lightweight structure such
as a tensioned membrane or a deployable gridshell could also serve as a formwork
for a concrete shell; a �exible formwork. �is would make sense if the cost of such a
structure is less than that of conventional formwork. �e cost of a large membrane
roof is about 300 €/m2 including design and engineering from personal experience,
while Bavarel et al. (2012) describe a deployable GFRP gridshell with a material cost
of 150 €/m2. Assuming that such structures are generally designed for 1.0 kN/m2 of
live load with a load factor of 1.5, their use as temporary formwork would allow for
an equivalent load of 60 mm of concrete. Even if the �nal design requires a thicker
shell, this thickness should su�ce for an intermediate, self-supporting shell structure
in many cases. Given that conventional timber formworks for curved shells cost
about 400-800 €/m2, depending on the curvature, it seems that �exible formworks
may be very competitive.

Prestressed fabrics have already been applied as formwork for anticlastic shell struc-
tures up to modest sizes. By combining a cable net with fabric, it is possible to scale
the concept of fabric formworks to the size of large-span roofs and bridges (Torsing
et al. 2015, 2012, Veenendaal & Block 2014b), especially when applying a thin coat
of concrete or mortar to form a shell structure. By carefully designing the cable net
and its topology, and calculating and controlling the prestressing forces, it is possible
to form a wide range of anticlastic shell shapes beyond those of the traditional hy-
perbolic paraboloid (Van Mele & Block 2011). �ese lightweight formwork systems
reduce the need for separate foundations of the formwork and allow unobstructed
space underneath the shell during construction.

1.1.5 Embodied energy

Placed in a wider context, �exibly formed shells can o�er a positive contribution
to the challenge of climate change. �e scienti�c consensus is that climate change
is a result of man-made greenhouse gas emissions, and that these must be rapidly
reduced in order to limit widespread and destructive e�ects (Cook et al. 2013, Hansen
et al. 2013). In response, EU countries have agreed on a binding target of a 80%
reduction of greenhouse gas emissions by 2050 (Hübler & Löschel 2013).

Buildings account for 40% of global energy consumption and up to 30% of global
greenhouse gas emissions (UNEP 2013). A large share of this energy is locked in
for long periods due to the life span of buildings. In fact, the superstructure of
buildings alone, either steel or reinforced concrete, can account for up to 45% of
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embodied energy (Kaethner & Burridge 2012). Concrete in particular is our most
widely used construction material, and, meanwhile, worldwide consumption of
cement is increasing. Cement manufacture alone is estimated to account for 5.2%
of global CO2 emissions (Boden et al. 2013). On the other hand, the embodied
carbon of reinforced concrete is anywhere between 5 to 50 times lower than that of
steel (Purnell 2013), possibly twice that when accounting for carbon uptake due to
long-term carbonation of built concrete (Xi et al. 2016).

With clear targets for the reduction of carbon emissions, and with concrete for
building construction representing a large share of current emissions, bringing about
the revival of e�cient, thin concrete shells, and reducing material waste of their
formworks, are worthwhile pursuits.

35



1.2 Problem statement and objectives

�e problem statement of the thesis is:

Concrete shells, though appropriate formodern application and e�cient
structurally, ultimately su�er due to formal limitations aswell asmaterial
and labour cost of conventional formwork systems.

�e hypothesis is that a �exible formwork can mitigate or entirely remove the disad-
vantages mentioned in the problem statement, by allowing a wider range of geome-
tries to be constructed in a more economical fashion than possible with conventional
formworks.

�e scope is limited to prestressed cable-net and fabric formworks, which necessarily
produce only anticlastic, i.e. negatively curved shell structures. It is also limited to
concrete as the most common material used for casting.

�e primary objectives of this thesis are:

• to conceptualize a constructional �exible formwork system for thin concrete
shells;

• to develop a work�ow for the design of such a formwork system and resulting
shell structure; and,

• to establish its technical feasibility, or limits thereof.

At the start of this thesis, the history of �exible formworks was not fully understood.
A prior state-of-the-art review by Abdelgader et al. (2008) refers to a 1906 patent, one
structure by Felix Candela (Figure 3.8), and developments mostly in 1970s and 80s.
Shells cast on networks of wires in the 1960s (shown in Section 3.7) were not cited
in contemporary literature, and a wider view of formworks using discrete elements
such as wires, cables, chains or belts had not yet been taken.

Furthermore, it was clear that some method of form �nding would be relevant to
apply, should the shape of the formwork and/or the resulting shell be optimal in
some way. Unfortunately, literature on existing form-�nding methods did not reveal
any thorough comparisons, making it unclear to what extent these methods di�er
and in which cases one may be preferable over another.

As a result, secondary objectives of this thesis, intended to contextualize the present
work, are:
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• to review and compare existing form-�nding methods, limited to the basic
case of self-stressed networks and surfaces;

• to review the history of fabric formworks and speci�cally �exible formworks
applied to the construction of shells.

1.3 Outline

�is thesis is divided into six parts. �e present introduction forms the �rst part and
chapter. �e remaining parts are: a review of shell design and construction methods;
a review and comparison of numerical methods for form �nding, without and with
constraints; a proposed design methodology and work�ow for the fast generation of
�exibly formed shells; results in the form of prototypes, a parametric study and a
case study; and, conclusions.

Chapter 2 introduces the methods with which shells and other lightweight structure
have traditionally been designed: mathematical equations, physical and numerical
form �nding and freeform design. It concludes by discussing conventional form-
works, their cost, and potential developments in 3D printing.

Chapter 3 provides a review of �exible formworks for shell structures, including
methods related or similar to the proposed cable-net and fabric formwork system.
�ese developments are placed in a wider historical context. Any available infor-
mation on cost is collected and compared to that of conventional systems in the
previous chapter.

Chapter 4 discusses networks of linear and triangular �nite elements commonly
used in numerical form �nding. �ese elements can be purely geometrical (line
and triangle) or, including material properties, be mechanical (spring, bar and
membrane). �e elements and notation are used in subsequent chapters on numerical
methods.

Chapter 5 provides a review of form-�nding methods for prestressed networks and
surfaces. A generic form-�nding method is presented and explanations are given
throughout, under what conditions it becomes a speci�c well known form-�nding
method. �e resulting framework is then used to compare the performance of
existing methods.
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Chapter 6 is an introduction to least squares methods for solving form-�nding
problems that have additional constraints. It links variations of such methods as
they have been applied in the 1970s, and more recently in the context of �exible
formworks and this thesis.

Chapter 7 outlines a step-by-step work�ow for the design and engineering of a �exibly
formed shell and its formwork. A form-�nding method, from Chapter 5, can be used
for the generation of an initial form, and a constrained form-�nding method, from
Chapter 6, is necessary to compute forces or stresses in the formwork under load. �e
work�ow aims to keep computational cost manageable, to allow for implementation
in a parametric design tool or an optimization model.

Chapter 8 provides a complete description of recommendations given by the Interna-
tional Association of Shells and Spatial Structures, for the design of a concrete shell
given the lack of guidance from building codes for such structures. �is description
allows one to quickly consider relevant aspects at an early stage of design, without
the need for time-consuming nonlinear analyses or model testing until later on.

Chapter 9 presents three prototype shell structures that were made with �exible
formworks. It o�ers photo documentation and additional information regarding
detailing and construction.

Chapter 10 proceeds with the experimental results obtain from the prototypes. �ey
served three purposes: as constructional proof of concepts; to test the design work-
�ow from Chapter 7; and to investigate construction tolerances of �exible formworks.

Chapter 11 implements the work�ow from Chapter 7 to explore the limits of �exibly
formed shells in a parametric study, based on a simple hyperbolic paraboloid shape.
Sensitivities to inaccuracies in material and load assumptions are investigated as
well.

Chapter 12 describes the structural design of the �exibly formed shell roof of NEST
HiLo, a duplex penthouse apartment to be completed in 2018 in Dübendorf, Switzer-
land. �is work constitutes the �nal design, which was submitted in August 2015 and
led to approval of the building permit.

Chapter 13 o�ers conclusions, recommendations and suggestions for future work
regarding the concept and development of �exibly formed shell structures.
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Part II

Review
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[�e shell] is the prima donna among load-bearing structures: if it is
used correctly, it is capable of maximum performance. It can, however,
also be temperamental, therefore sensitive, if it is not properly treated.

— Ekkehard Ramm, 2002





CHAPTER TWO

Shell design and construction

�emost structurally e�cient shells exploit double curvature to create sti�ness. �is
makes it di�cult to describe them geometrically, both for analysis and construction.

From the start of the golden era of shells, the 1920s, analytical functions were the
method of choice to simplify both these tasks, and until the 1960s nearly all shells
and their formworks were de�ned as suchmathematical shapes.

In the 1960s and 70s, physical form �nding was used to generate newer, potentially
more e�cient shell forms, or natural shapes. Both Heinz Isler and Frei Otto used
hanging models for this purpose, and the latter and Sergio Musmeci used soap �lms
as well. “However the shells almost vanished from the market[, with] Isler as the
most encouraging exception of [sic] the rule” (Schlaich 1985).

�e introduction of computer-aided design led to a proliferation of complex designs
from the late 1990s onward. As a consequence, much of architecture and academia is
preoccupied with technically rationalizing such freeform shapes through the studies
of architectural geometry, structural geometry and structural optimization. �e
�eld of structural geometry includes computer simulations of earlier physical form-
�nding methods. Such numerical form-�nding methods were already developed in
the 1970s and have been in use, particularly for the design of tensioned membrane
roofs, since the 1980s.

�ese three categories of shell shapes—mathematical, natural and freeform—also
appear in the introduction by Adriaenssens, Block, Veenendaal & Williams (2014b).
�is chapter provides an overview of traditionalmethods to generate these three types
shapes: mathematics, form �nding and freeform design. In addition, an overview
of existing and emerging formwork methods is given, with the exception of �exible
formworks, which are discussed in Chapter 3.

43



Section 2.1 lists typical analytical functions as well as more recent trigonometric
functions that were used to de�ne shell geometries. Sections 2.2 and 2.3 explain the
historical development of physical form �nding and their subsequent numerical
analogues. �e mathematics of these numerical methods is described in detail in
Chapter 5. Section 2.4 o�ers examples of early and recent freeform shells. Section 2.5
summarizes the types of formwork construction that have been used and mentions
some recent developments as well. References on the cost of shell construction are
summarized. �e chapter ends with a discussion in Section 2.6, before drawing
conclusions in Section 2.7.

2.1 Mathematical shapes

Early shell design was dictated by analytical expressions de�ning their geometry.
Indeed, Heinz Isler remarked that “curiously, practically all such shells built at the
time of the shell boom (until the 1960’s) are characterised by a commondistinguishing
feature: they are all geometric forms, i.e. their form is dictated chie�y by the shapes
of school geometry. �us we �nd cylinders, sphere sections, cones, hyperboloids etc.
It was the analytic thinking of the times that restricted the creators’ thinking to the
shapes easily de�ned” (Isler 1995).

Medwadowski et al. (1979) divides shell geometries into Catalan surfaces, transla-
tional and generalized translational surfaces, and helicoids. Quadric surfaces cover
the �rst two categories, except for conoids and cylindroids. Distinctions between
such shapes are o�en made on the basis of their generating curves: the generatrix
and the directrix. A generatrix is a curve, that when moved along a given path, or
directrix, generates a shape.

Beyond these types of surfaces, it is possible to perform a�ne transformations to
deform them, aggregate multiple surfaces into new compound surfaces (Medwad-
owski et al. 1979), introduce damping in the case of sinusoidal surfaces, or superpose
multiple surfaces.

�e following sections give selected examples of analytically de�ned shells and
their formworks. Section 2.1.1 deals with conic and quadric surfaces, which include
ellipsoids, paraboloids and hyperboloids; Section 2.1.2 with conoids and cylindroids.
Section 2.1.3 discusses generalized translational surfaces and other analytical surfaces.
Apart from concrete shells, there are many brick vaults as well as steel and timber
gridshells with such shapes. �e reader is referred to Ochsendorf (2013), Schober
(2015) and Chilton & Tang (2017) respectively.
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2.1.1 Conics and quadrics

�e de�nition of nearly all classical shells can be derived from conics or quadrics.
Conics are curves that arise from intersections between a plane and a cone, i.e., conic
sections. �ey are the circle, the ellipse, the parabola and the hyperbola.

Figure 2.1: Conic sections, or conics, result from the intersections between a plane and a
cone.

In three dimensions, the resulting surfaces are referred to as quadrics. �e simplest
are degenerate quadrics, such as cones or cylinders, which are extrusions of the conic
sections. Shells based on cylinders are known as barrel vaults. Quadrics can also have
double curvature, which is the case for the ellipsoid, elliptic paraboloid, hyperbolic
paraboloid, elliptic hyperboloid of one sheet (also known as a hyperbolic hyper-
boloid), or elliptic hyperboloid of two sheets (also known as a elliptic hyperboloid).
Table 2.1 gives an overview of their equations.
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elliptic (circular if a = b) hyperbolic parabolic
ellipsoid (spheroid if a = b, sphere if a = b = c)
x2

a2
+ y2

b2
+ z2

c2
> 0

(elliptic) cylinder hyperbola parabola
(“hyperbolic curve”) (“parabolic curve”)

x2

a2
+ y2

b2
> 0 x2

a2
− y2

b2
> 0 x2 + 2ay = 0

cone
x2

a2
+ y2

b2
− z2

c2
= 0

hyperboloid of two sheets hyperboloid of one sheet see hyperbolic paraboloid
(“elliptic hyperboloid”) (“hyperbolic hyperboloid”) (“parabolic hyperboloid”)
x2

a2
+ y2

b2
− z2

c2
< 0 x2

a2
+ y2

b2
− z2

c2
> 0

elliptic paraboloid hyperbolic paraboloid
x2

a2
+ y2

b2
− z

c
= 0 x2

a2
− y2

b2
− z

c
= 0

Table 2.1: Quadrics used for the design of analytical shells.
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Figure 2.2: Construction and opening of the Zeiss Planetarium in Jena, Germany, 1926.

Ellipsoids

�emost basic doubly curved geometry for shells is the semi-spherical dome, based
on a spheroid. Seminal examples are the Pantheon in Rome, built in the second
century BCE, and the 1926 Zeiss Planetarium in Jena, Germany (Figure 2.2). �is
planetarium was developed and designed by Walter Bauersfeld (1879-1959), an engi-
neer with the client, Carl Zeiss Optical Industries, and Franz Dischinger and Ulrich
Finsterwalder from the engineering �rm Dyckerho� &Widmann. Several models
were built leading up to a 16 m span, 30 mm thick prototype, built on top of the
Zeiss factory in 1924, and considered the �rst thin concrete shell of the modern era
(Medwadowski 1998, Meyer & Sheer 2005). �e �nal 25 m span, 60 mm thick dome
was constructed using a rigid triangular steel grid, a geodesic dome, as a stay-in-
place framework and reinforcement. Concrete was sprayed (Torkretbeton) from
the outside onto curved timber panels, suspended from the steel grid (Figure 2.2)
(Schmidt 2005).

�e construction system was later patented under the name Zeiss-Dywidag, and
exploited by Dyckerho� &Widmann with considerable success, with c. 1’680’000
m2 of licensed shell surface, mostly barrel vaults (cylinders) and domes, built be-
tween 1923 and 1944 (May 2015). Apart from the patent, the required engineering
knowhow for these shells contributed to their competitive position in the market.
�e complexity of their calculations, considered “a sort of transcendental mystery
only divested by the German school” (Pizzetti 1958), remained a source of frustration
for others, as “the mathematical prowess of those who revel in the somewhat mystical
approximations [. . . ] is denied to many members of the profession.” (Waller & Aston
1953). At the same time, the limited repertoire of shell geometries, led others to
describe them as “plain (Zeiss-Dywidag) shells” (Billig 1951).
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A recent ellipsoidal shell is the Centro Ovale in Chiasso, Switzerland (Figure 2.3)
(Muttoni et al. 2013). �is 93 × 52 m, 100 mm thick shell was constructed by spray-
ing and pouring steel �bre-reinforced concrete onto traditional reinforcement and
timber falsework with panels bent on site. �e cost of falsework and formwork
was reported to be 49 % of the total construction cost of the shell. Muttoni et al.
(2013) concluded that traditional approaches to formwork and falsework can lead
to excessively complicated and expensive systems, and that further research and
innovation is needed.

Figure 2.3: Construction and �nal structure of the Centro Ovale, Chiasso, Switzerland, 2013.

Paraboloids

Domes with an (elliptic) paraboloidal shape are less common than spherical domes.
More well known examples include several concrete domes designed by Oscar
Niemeyer, such as the 1960 National Congress of Brazil (Figure 2.4) and the 2006
Cultural Complex of the Republic, both in Brasilia, and the 2011 Centro Niemeyer in
Avilés, Spain.
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Figure 2.4: National Congress of Brazil, Brasilia, 1960.

Apart from the spherical dome, the hyperbolic paraboloid, also known as a hypar or
HP shell, has been of great interest in shell design, and was popularized by renowned
shell builder Félix Candela Outeriño (1910–1997). �is shape is a ruled surface,
described by a straight generatrix and straight directrices, which can be exploited for
construction. For example, the shuttering of the formwork and reinforcement of the
shell can both be built using straight elements.

Espion (2016) considers Fernand Aimond (1902–1984), a chief engineer with the
French Ministry of Air, to be the “father of the hypar”. �e �rst built examples he
designed are the 1933-1936 shelters for hydrogen bottles storage at the Cuers-Pierrefeu
airship base in France (Figure 2.5). Aimond (1936) published a 112-page paper on the
subject, which introduced Candela to this particular shape.

Figure 2.5:�e �rst built hypar concrete shells: the hydrogen bottles storage at the
Cuers-Pierrefeu airship base, France, 1933.
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Candela started using the hypar for the 11 m span, 15 mm thick Cosmic Rays Labo-
ratory, built in Mexico City in 1951 (Figure 8.4). His hypar shells were constructed
on timber formworks, that made e�cient use of straight timber boards, but also
required substantial sca�olding (Figure 2.6).

Figure 2.6:�e 18 m span, 40 mm thick Chapel Lomas de Cuernavaca, Morelos, Mexico,
1959.

His last works were the hyperbolic paraboloid entrance and restaurant buildings of
L’Oceanogrà�c, an oceanarium in Valencia, Spain. �e latter, a 35.5 m span, 60 mm
thick shell, used steel �bre reinforced shotcrete along with traditional reinforcement.
�e formwork was still the same in principle, but used some modern, equivalent
components, such as engineered timber beams for the shuttering as well as a standard
modular, tubular shoring system (Figure 2.7) (Domingo et al. 2004).

Figure 2.7: Entrance and restaurant buildings of L’Oceanogrà�c, also known as ACHypar and
JCHypar, Valencia, Spain, 2003.
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�e Philips Pavilion, designed by Iannis Xenakis (1922–2001) while collaborating
with Le Corbusier (1887–1965), built for the 1958 World Expo in Brussels, Belgium,
is unique for several reasons. �e entire envelope consisted of hyperbolic paraboloid
surfaces, nine in total. �e structure, 40 × 25 m in plan, and 22 m high, was further
segmented into c. 1.5 m2, 50 mm panels, that were prestressed by steel cables. �ese
segments were prefabricated on an earthen mould (Figure 2.8) (Pronk et al. 2007b).

Figure 2.8: Philips Pavilion, World Exposition, Brussels, Belgium, 1958.

Hyperboloid of two sheets

Domes with an (elliptic) hyperboloidal shape are very rare. �e only example found
is the St. Maria Goretti Catholic Church in Scottsdale, Arizona, US, designed by
Wendell E. Rossman. �e central hyperboloid dome has a span of 17 m and is 100
mm thick consisting of foam with sprayed concrete (Gunite).
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Hyperboloid of one sheet

�e hyperboloid is the default shape for concrete, natural draught cooling towers,
and has become associated in particular with nuclear power plants. �e hyperboloid
shape has a positive e�ect on air �ow and cooling e�ciency, and also allows straight
reinforcement along its ruled surface. �e idea of a concrete hyperboloid cooling
tower was patented and executed by Van Iterson & Kuypers (1918), as an alternative
to steel or timber cooling towers at the time. �e �rst two were built in 1917-1918
as part of the Dutch state coal mining facility Emma in Heerlen (Figure 2.9). �e
second was 35 m high, with a wall thickness between 75 and 300 mm. �e company
Mouchel subsequently built 600 of such towers over a 40 year period (Damjakob &
Tummers 2004).

Figure 2.9: Van Iterson cooling tower during construction, operation and demolition,
Staatskoolmijn Emma, Heerlen, Netherlands, 1918-1980.

Amodern example is the tower for the RWE power station in Niederaussem, Ger-
many (Busch et al. 2002), which was the worlds highest such cooling tower at 200
m, until the construction of two 202 m cooling towers (though they are smaller in
surface area) for the Kalisindh thermal energy plant in Rajasthan, India completed in
June 2012 (Asadzadeh & Alam 2014). Formwork systems have become standardized,
self-climbing slipform systems, which allow variations in angle and diameter (Figure
2.10).

A wide-span shell roof using hyperboloids is the 2004 bus station in Casar de Cáceres,
Spain, designed by Justo García Rubio (Figure ) (Rubio 2004). �e main span is a 34
m, 120 mm thick shell, and the entire structure can be described by eight surfaces
consisting of hyperboloids and truncated cones (Egea 2004).
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Figure 2.10: Doka SK175 self-climbing formwork, applied to 150 m high Kalinin cooling
tower, Russia, 2010.

Figure 2.11: Bus station in Casar de Cáceres, Spain, 2004.

2.1.2 Conoids and cylindroids

Together with the hyperbolic paraboloid, conoids and cylindroids are classi�ed as
Catalan surfaces. �ese are ruled surfaces whose ruling is parallel to a �xed plane.
�is ruling, a straight generatrix, moves along two directrices in space. If both
directrices are also straight lines, then the surface is a hyperbolic paraboloid. If
one directrix is curved, then the surface is a conoid. Examples are circular, elliptic,
paraboloid and sinusoidal conoids. If the conoid’s straight directrix is perpendicular
to the aforementioned �xed plane, then it is called a right conoid. If both directrices
are curved, then the surface is a cylindroid. Early examples in concrete are the
(possibly parabolic or hyperbolic) conoid roofs of the 1926 Magasin général de
Saint-Pierre-des-Corps, by Eugène Freyssinet (1879–1962) (Figure 2.12)
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Figure 2.12: Post-war rebuilding in 1948 of the Magasin général de Saint-Pierre-des-Corps,
France, 1926.

2.1.3 Generalized translational and other surfaces

Generalized translational surfaces may have a generatrix that no longer moves per-
pendicular to a �xed plane, or its shape can vary depending on the position of the
generatrix. �e generatrix and directrices can be the same type of curve, resulting in
elliptical, paraboloid or sinusoidal surfaces.

�e unrealized 1955 design for the Táchira Club in Caracas, Venezuela, by Eduardo
Torroja y Miret (1899–1961), for example, had a trigonometric directrix, consisting of
three sinusoidal terms, and a catenary generatrix (Figure 2.13). �e shell’s boundaries
were de�ned by parabolas and higher-order polynomials (Escrig & Sánchez 2005).
�e second phase of the project, which included this shell, was never built due to the
1958 Venezuelan coup d’état, which e�ectively ended lavish public spending by the
previous dictatorship. �e complicated nature of the shell’s mathematical de�nition
blurs the lines between mathematical and freeform shapes, and the Táchira Club
has indeed been referred to as the latter (Section 2.4). �e same is true for some of
Heinz Isler’s shells, which were derived from circular curves of varying radii and
referred to as freeform as well (Chilton 2000).

Beyond translational surfaces, there are other, in fact endless ways in which to
aggregate and combine analytical shapes to obtain new ones.
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Figure 2.13: Scale models for the unbuilt Táchira Club, Caracas, Venezuela, 1955.

2.2 Physical form finding

In 1959, Heinz Isler presented his seminal paper, titled “New Shapes for Shells” at
the very �rst Congress of the, then, International Association for Shell Structures
(IASS) in Madrid. He introduced three physical methods for shaping shells and also
mentioned one more during the subsequent discussion (Isler 1960):

• the freely shaped hill;
• the membrane under pressure;
• the hanging cloth reversed; and,
• soap skins.

�is event is generally regarded as a watershed moment in the design of shells,
creating awareness of alternatives to mathematical shapes.

In the case of the freely shaped hill, Isler mentions the idea of small models, but
presents only one example of a free-standing shell; a small atomic shelter, built in
1955 (Figure 2.58). Here, the hill, or earthen formwork, is not only a direct method
of design, but the construction method as well (Section 2.5.4). As the bunker’s shape
was designed to be semi-spherical (Isler 1956), the hill was only a constructionmould,
so Isler con�ated the two purposes. So, given the lack of �rm examples, the utility of
the freely shaped hill as a form-�nding method is questionable.

�is section discusses each of the other methods, with the hanging cloth preceded
by a section on hanging chain models, and the soap skins, or soap �lms, followed
by additional subsections on rubber membrane models (which typically produce
self-stressed, but not necessarily minimal surfaces like soap �lms do). �e �nal
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subsections illustrate the introduction of pneumatic and hydraulic pressure to the
membrane. Built projects used as examples in this chapter include masonry vaults
as well as tensioned cable-net and membrane roofs, as only few structures designed
by form �nding were executed as concrete shells.

2.2.1 The hanging chain

�e earliest recorded suggestion of physical modelling to derive a structural shape is
the hanging chain by Robert Hooke (1635–1703). He published ten “Inventions” in
the form of anagrams of Latin phrases in order to protect his ideas (Hooke 1676).
�e third invention would later become known as Hooke’s law of elasticity for which
he is most known. �e second (Figure 2.14), describing ‘the true Mathematical and
Mechanical form of all manner of arches for building’ is given as: “abcccddeeeeefggi-
iiiiiiillmmmmnnnnnooprrsssttttttuuuuuuuux”.

�e solution to this architectonic riddle was posthumously published by the secretary
of the Royal Society, Waller (1705), and read “Ut pendet continuum �exile, sic stabit
contiguum rigidum inversum”, or “As hangs the �exible line, so but inverted will
stand the rigid arch”. �e idea is simple: invert the shape of the hanging chain, which
by de�nition is in pure tension and free of bending, to obtain the equivalent arch
that acts in pure compression.

Figure 2.14: Robert Hooke’s anagram on the means to �nd the ideal compression-only
geometry for a rigid arch (Hooke 1676)

Hooke published his work while collaborating with Christopher Wren (1632–1723)
on the design of St. Paul’s Cathedral in London. �eir attempt to �nd the ideal shape
of its structural, interior dome, led Wren to de�ne the section as a cubic parabola,
where y = ax3, although the eventual dome was conical to account for the heavy
roof lantern at the top, and incorporated iron chains to resist ring forces (Figure 2.15).
�e correct expression for the catenary, y = cosh(x/a), was established soon a�er
by others (Heyman 1998).
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Figure 2.15: St. Paul’s Cathedral, London, UK, with study for a dome with a cubic parabola as
curve, drawn by Christopher Wren, c. 1690, cross-section revealing �nal conical design,

drawn by Arthur Poley, 1927, and recent photo of exterior.

Figure 2.16: Great Hall of the Palace of Taq-i Kisra, Ctesiphon, sixth century BCE, located in
Iraq, 1932. Single point load introduced at midspan. Comparison of the structure with an

ellipse, parabola and catenary, revealing the latter to best describe the shape.

Knowledge of the catenary is likely to have existed as early as the sixth century BCE,
as evidenced by the 26 m span, 30 m high catenary shaped vault of Taq-i Kisra at the
ancient Sassanid city of Ctesiphon, located in Iraq. Photogrammetric measurements
made in 1966 have supported this assertion (Figure 2.16) (Trautz 1998). �is structure
would later inspire James Waller (1884–1968) to develop a patented system of �exibly
formed, corrugated, catenary shaped vaults and domes, called Ctesiphon (Section
3.2.2). In turn, “Ctesiphon” vaults have become synonymous with Spanish catenary
shaped roofs in general, which were particularly popular in the 1950s (Rabasco 2011).
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Hooke’s idea led to the use of simple hanging models for designing and calculating
arches and bridges in eighteenth century England, and more famously by Giovanni
Poleni (1683–1761) in the 1740s to assess the safety of St. Peter’s cathedral in Rome.

�e concept of an interior, catenary shaped dome was later implemented for the
Panthéon (originally called Ste. Geneviève) in Paris, completed in 1790 and designed
Jean Baptiste Rondelet (1734–1829). �e catenary appears elsewhere in several open-
ings adjacent to the dome. Rondelet had incorrectly spoken against the �nal design
of St. Paul’s, while uncritically propagating the catenary. Trautz (1998) argues that
cracks in the structure cannot be explained solely bymaterial strength and settlement,
but, ironically, are also due to the inappropriate shape of the dome given the weight
of the roof lantern.

2.2.2 Hanging chainmodels

By the nineteenth century, the inverted hanging chain had become more widely
known throughout continental Europe via a range of textbooks (Tomlow 2002).

Wilhelm Tappe (1769–1823) recognized the catenary as an ideal shape, but preferred
pointed or elliptical arches for other reasons. He indicated that the shape of the
catenary could be altered by changing the weights along the chain model. In e�ect,
he proposed the principle of weighted chains for design rather than analysis as in
Poleni’s case. He built an experimental, elliptical hut in 1818 (Figure 2.17), and applied
his designs to at least one other instance (Tomlow 2002). Based on his ideas, Tappe
proposed a new type of architecture with catenary or elliptical arches and domes
(Huerta 2006, Tappe 1818-1823), which Tomlow (2002) refers to as proto-Gaudinism
(Figure 2.17).

Heinrich Hübsch (1795–1863) designed several churches using hangingmodels, using
multiple strings with weights corresponding to the real structure. Hübsch (1838),
lamenting existing, time-consuming approaches, published the method and claimed
its invention: “ I �nally thought up a graphical method, which is not a strict geometric
construction, but is as easy as it is infallible”. He was able to apply the approach for
example, to the 1837 St. Cyriakus church in Bulach, near Karlsruhe, Germany (Figure
2.18).
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Figure 2.17: Experimental hut, similar to an 1818 house for the Fürstin-Regentin von der
Lippe (Tomlow 2002) and catenary architecture proposed by Tappe (1818-1823).

Carl-Anton Henschel (1780–1861) designed a 16 m dome for his own foundry in
Germany, also completed in 1837, now part of the University of Kassel (Figure 2.18).
Its thickness varies from 320 down to 175 mm, to approximate a nearly semi-spherical
shape, while keeping the thrust line within the geometry. Based on a reconstruction
by Tomlow (1993), Henschel is thought to have used a hanging model, possibly
three-dimensional, but certainly one that accounted for ring forces. It is likely that
Henschel was aware of Poleni’s and Hübsch’ work (Tomlow 1993, 2002).

Similarly, the line of thrust of the internal dome of San Gaudenzio (Figure 2.18), com-
pleted in 1887, designed by Alessandro Antonelli (1798–1888), is perfectly contained
within the masonry section of the dome (Corradi et al. 2009). Its unique shape and
performance has led Trautz (1998) to hypothesize that Antonelli, who was aware of
Rondelet’s work, had used a three-dimensional hanging model in its design process,
which had initially started from a catenary around 1855.

By the late nineteenth century Germany, hanging models were recommended and
used for design and analysis of arches and vaults. �is culminated in publications on
the idea of three-dimensional hanging models by Friedrich Gösling (1837–1899) (Fig-
ure 2.19) and Karl Mohrmann (1875–1937). Gösling was likely familiar with Tappe’s
work, as both men had worked in Detmold (Graefe 2012). Mohrmann proposed the
following thought experiment in his 1890 revised edition of Ungewitter: “One can
best imagine its form, when one imagines a hanging net underneath the vault, whose
nodes are loaded just like those of the upper vault. �is net will assume a shape which
is a faithful mirror image of a bar system corresponding to the vault.” Mohrmann
proceeded to discuss graphical methods, but recommended the construction of
actual 1:10 three-dimensional hanging models in special cases.
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Figure 2.18: Structures designed with hanging models: Sti�skirche St. Cyriakus, Bulach,
Germany, 1837; Gießhaus (foundry) of �rma Henschel, Kassel, Germany, 1837; and, Basilica

San Gaudenzio, Novara, Italy, 1887.

Figure 2.19: Earliest known depiction of a three-dimensional hanging model by Friedrich
Gösling, 1895 (Graefe 2012), and earliest known three-dimensional hanging model by Antoni

Gaudí (Ráfols 1929).

It is probable that Antoni Gaudí would have been educated on these principles (Addis
2014, Huerta 2006). He used the hanging chain, along with graphic statics, for the
design of catenary shaped arches like those for the 1912 Milà House in Barcelona,
Spain. Gaudí constructed a �rst three-dimensional hanging model around 1898
(Figure 2.19). He applied this technique soon a�er, when he was commissioned to
design the Church of Colònia Güell (Tomlow 2002, 2011). Unfortunately, only the
crypt was built and le� in this incomplete state from 1914 onward. �e model itself
was lost but was reconstructed at the institute of Frei Otto (1925–2015), the Institut
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Figure 2.20: Original hanging model, 1898-1908, and reconstruction, 1983, and the crypt of
the Church of Colònia Güell, Santa Coloma de Cervelló, Spain, 1917.

für leichte Flächentragwerke (IL) in Stuttgart, Germany (Figure 2.20) (Graefe et al.
1983, Tomlow et al. 1989b). Gaudí’s work was revolutionary, when compared to his
predecessors, because he used hanging models as a means to design entirely novel,
yet sound structures.

Discrete hanging models in general had become a subject of study at IL. �ese
followed in the footsteps of an early 1960-1961 study by John Koch (Otto et al. 1973),
and Otto’s work on early hanging chain models for a gridshell prototype in Berkeley,
at the 1962 World Conference on Shell Structures at the University of California
(Happold & Liddell 1975, Otto 1964). �is was followed by a 17 m span gridshell in
Essen, Germany, that same year, and two 18 m ones for the German Pavilion at the
1967 Expo in Montreal, Canada (Hennicke et al. 1974). �e work at IL culminated in
the hanging model used for the design of the 1974 Multihalle gridshell in Mannheim,
Germany, built as part of the Federal Horticultural Show (Bundesgartenschau).
A�er an initial 1:300 model establishing the general design, a 1:98.9 scale model
was constructed and measured with photogrammetry (Figure 2.21). �is data was
then used for further numerical analysis and constrained form �nding (Figure 2.43)
(Addis 2014, Happold & Liddell 1975).

2.2.3 Hanging surfacemodels

�e idea of hanging a fabric, casting concrete and inverting it to obtain a funicular
shell was patented as early as 1932 and developed on a large scale in the late 1950s
(see Section 3.2.3).
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Figure 2.21: Hanging model for the Multihalle gridshell in Mannheim, Germany, 1974.

Otto et al. (1973) mention “sail shells”, “thin bending- and compression-resistant
structures that are shaped like a sail [that] are e�cient under uniformly distributed
positive loads”. Otto undertook a series of experiments with cloth and plaster in
1946-1949 to determine their shape (Hennicke et al. 1974). In his doctoral thesis, Otto
(1954) writes that “from the inversion of this hanging roof form, which is readily
investigated with static modelling, one can easily determine a favorable form for
a shell dome along a few points.” Further experiments were undertaken in 1958 at
Washington University in St. Louis. In this case, a rubber membrane was suspended,
loaded with weights, plastered, inverted and then hardened with plaster and a GFRP
resin. A later experiment with six rather than four corner supports is depicted in
Figure 2.22. Otto then moved on to discrete models for gridshells (see previous
section).

Figure 2.22: Hanging model of an unbuilt hexagonal river pavilion for a scout camp in
Mississippi.
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Figure 2.23: Hanging model and inverted form by Heinz Isler.

As mentioned, it was Isler who proposed this approach as a general design method
rather than a construction method, claiming it was “for three-dimensional problems,
what the catenary line is for two-dimensional arches” (Figure 2.23) (Isler 1960). He
did so based on observations made in 1955 of how wet hanging cloth would freeze in
winter (Ramm& Schunk 2002), but it is unknown if the correlation with the catenary
was established later, or in�uenced his thinking beforehand.

Figure 2.24: Hanging model and built structure of the Sicli Company Building, Geneva,
Switzerland, 1970.

Isler would succesfully be responsible for at least twenty projects consisting of 72
individual shell structures whose design was based on hanging models (Table 2.2)
(Chilton 2000, Ramm& Schunk 2002). In particular, Isler enjoyed great success with
the construction of tennis hall roofs. With the exception of the Broadland Sports
Village in the UK, these were built in Switzerland, mostly with 47-48 m span, and
generally 90-100 mm thick (Table 2.2).
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Figure 2.25: Construction for Isler’s tennis halls, and Sportscentre Heimberg, Switzerland,
1978.

Many of these shells were built with contractor W. Bösiger in Langenthal, who kept
a stock of reusable curved glulam beams that formed the shuttering pro�les of Isler’s
shells. �e shuttering consisted of insulation boards and timber laths, and the entire
system was supported by a standard shoring system.

project and location year span thickness
Motorway Service Station (2), Deitingen, Switzerland 1968 31.6 90
Sicli Factory, Geneva, Switzerland 1969 30 100
Open-air theatre, Stetten auf den Fildern, Germany 1976 27.2
Open-air theatre, Grötzingen, Germany 1977 28 90-120
Swimming pool, Heimberg, Switzerland 1978 32.5 90
Ballet Salon, Stetten auf den Fildern, Germany 1979 22
Brugg Swimming Pool, Aarepark, Switzerland 1981 35 90
Aircra� Museum (4), Dübendorf, Switzerland 1987 51.7
Broadland Sports Village Aquapark, Norwich, UK 1991 35 100
Tennis-Sport Düdingen (3) 1978 48.5 90-100
Sportscentre Heimberg (4) 1978-1979 47-48 90-100
Tennis Club La Chaux-de-Fond (2) 1978 47-48 90-100
Tennis Halls Grenchen (4,2) 1978, 1993 47-48 90-100
Crissier Halls (5) 1980 47-48 90-100
Tennis Halls Burgdorf (4) 1980 47-48 90-100
Dreilinden Tennis Centre, Langenthal (4) 1980 47-48 90-100
Emmen Tennis Centre, Lucerne (4) 1981 47-48 90-100
Brühl Sports Centre (6), Solothurn 1982 47-48 80
Paradies Tennis Centre (4), AllSchwil 1982 47-48 90-100
La�ène Sports Centre(4), Marin-Epagnier 1983 47-48 90-100
Sports Centre Les Iles, Sion (4) 1983 47-48 90-100
Broadland Sports Village (9), Norwich, UK 1988 47-48 90-100

Table 2.2: List of projects by Heinz Isler, designed using hanging models. Tennis hall roofs in
second part. Number of shells in brackets. Sicli Factory and Sportscentre Heimberg shown in

Figures 2.24 and 2.25 respectively.
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2.2.4 Soap films and rubber membranes

Robert Le Ricolais (1894-1977) has been referred to as the “father of spatial structures”
(Motro 2007). During his tenure at the University of Pennsylvania, he and his
students carried out many experiments, including the use of soap bubbles and soap
�lms around 1958-61 for the design of new structures (Figure 2.26).

Figure 2.26: Soap �lm models with polarized light, identi�ed as “soap �lm structure” and
“hyperboloid”, by Robert Le Ricolais, University of Pennsylvania, 1958-61.

Meanwhile, Frei Otto and his team also experimented with soap �lms and bubbles at
IL. Earlier experiments with elastic rubber threads and membranes began around
1953, and fundamental studies on soap �lms and bubbles took place between 1958
and 1965 (Bach et al. 1988). Otto had met Le Ricolai in Philadelphia and knew of his
work. He thought they may have “mutually bene�ted from each other to a certain
extent, but that’s it” (Songel 2010).

Figure 2.27: Soap �lm model and �nal structure of the 1979 King Abdul Aziz Stadium,
Jeddah, Saudi Arabia.
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Figure 2.28: Soap �lm machine with an umbrella canopy model inside for the 1977 Pink
Floyd US concert tour, at IL, University of Stuttgart, Germany.

Otto used soap �lm models for the design of several tensile membrane structures
(Figure 2.27). For this purpose, a soap �lm machine was developed and built at
IL in the period 1967-1973. �e machine featured a climate chamber, lighting and
photography to study, measure and record models (Figure 2.28) (Bach et al. 1988).

Primarily occupying himself with lightweight tensile systems, it was only at the
end of his life that Otto employed a soap �lm model for a reinforced concrete shell.
Ingenhoven Architects approached him to design the thin-shell platform canopy
as part of the overhaul of Stuttgart’s main station and tracks, better known as the
Stuttgart 21 project. �e 28 supports, spanning a distance of 36 m with a thickness of
350mm, are referred to Kelchstütze (chalice supports) due to their open shape, which
allows for daylight entry. At his own studio, AtelierWarmbronn, Otto used both soap
�lms and meshes to develop the design. Buro Happold measured and digitized the
�nal model, as the starting point for further re�nement of the design. Controversially,
Otto quit the project in 2009, citing geotechnical safety concerns, not long a�er both
Buro Happold and engineering �rm Leonhardt, Andrä und Partner were released
from the project. A mockup of the formwork was recently completed, and consisted
of standard sca�olding, props and timber trusses, with milled plastic foam.
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Figure 2.29: Soap �lm and mesh models, c. 2000, formwork mockup, 2016 and render of the
train station platform canopy, Stuttgart 21 project, Germany, 2000.

Sergio Musmeci (1926-1981) used stretched rubber membrane and soap �lm models
to design large-span bridges: the Tiber Bridge in Tor di Quinto, Rome, 1959 (Figure
2.30); and the Lao Bridge in Conzensa, 1964. He had also experimented with hanging
models for the 1956 design of the Astico Bridge, close to Vicenza (Figure 2.30).

While Musmeci knew of Le Ricolais, at the time he was unaware “that Frei Otto was
embarking on similar experiences with tensile structures in the same years.” All three
projects were never built, but soon a�er he was able succesfully propose the Basento
Bridge, also known as the Musmeci Bridge (Figures 2.31 and 2.32) (Adriaenssens et al.
2015, Ingold & Rinke 2015).
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Figure 2.30: Form-�nding models for the unbuilt Astico Bridge, 1956, and Tiber Bridge in
Tor di Quinto, Rome, 1959.

Figure 2.31: Form-�nding models for the Basento Bridge in Potenza, Italy, 1975.

�e bridge consists of four 69 m spans, and the shell structure supporting the deck
has a nominal thickness of 300 mm. �e design work started in 1967, with con-
struction taking place between 1971 and 1975. �e formwork consisted of timber
and standardized shoring. Above the river the formwork was supported by large
struts radiating from the abutments. �e complexity of the geometry and subsequent
delays plagued the project, with construction costs spiraling from 490 to 920 million
liras (Giovannardi 2010). However, given the sheer size of the Basento Bridge, this
cost, even by today’s standards, seems modest.
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Figure 2.32: Basento Bridge, Potenza, Italy, 1975.

In the US, only one year a�er Isler’s conference presentation, Kolbjørn Saether (1925–
2007) published a paper on designing funicular shells, or “structural membranes”,
by analogy with elastic membranes (Saether 1961). “If a complete stress reversal is
assumed the shape of an elastic membrane under tension would be ideally suited for
a concrete structure under compression.” He argued that funicular shapes were too
complex to physically measure or analyze, and advocated their approximation with
mathematical shapes. �e model shown in Figure 2.33, for example, was approxi-
mated by connected conoids and hyperbolic paraboloids. Most of his other physical
models included air pressure (Section 2.2.5). Saether (1995) mentions traditional and
earthen formworks as possible methods of construction.

Figure 2.33: Rubber membrane models for one- and four-column structure (Saether 1961).
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Citing Otto and Saether, Willard August Oberdick (1922–1982) suggested using soap
�lms and elastic membranes for the design of plastic funicular shells, but also as
a direct means of construction, referring to the method as a “form-giving device”.
�is is possibly the earliest realization that the method of design and method of
construction can be the same, though this idea is already implicit in some of Otto’s
and Isler’s earlier work.

Two prototypes were built at the University of Michigan, both 24 � square in plan
consisting of four umbrella shells, one with four high points, the other inverted
(Oberdick 1965a,b). �ey were made by impregnating a 1 in reticulated �exible foam
with urethane resin, stretching it into a frame, curing it and then spraying glass
�bre reinforced polyester resin, with the initial shell removed for use as a template
formwork for the other umbrellas (Figure 2.34). Oberdick (1965b) also considered
hanging models, which were deemed problematic to invert at larger scales, leading
him to bending-active formworks (Section 3.5).

Figure 2.34: Soap �lm and �exible polyurethane foam membrane models, 12 � square
measurement model and inverted prototype (Oberdick 1965a).

Rein Jansma used a stretched rubber membrane to design the Extended Waalbridge
(Figure 2.35) (Torsing et al. 2012), although further requirements from the client
required the shape to be substantially altered. �ese changes were made through a
computational form-�nding model. �e bridge has two larger 79 m spans and its
lower surface is 300-500 mm thick. Although the bridge was initially envisioned
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Figure 2.35: Plaster model using rubber membrane, wire model, timber formwork and �nal
structure of the Extended Waalbridge, Nijmegen, Netherlands, 2015.

as a shell, the �nal design has vertical diaphragm walls throughout, connecting the
lower surface with the upper deck. �e construction was carried out in full timber
formwork, but prior to tendering the idea of a fabric formwork had been suggested.
Søndergaard et al. (2014) report that CNC milling was prohibitively ine�ective for
this scale and not economically competitive with the more traditional approach that
was chosen.

Toyo Ito designed the Taichung Metropolitan Opera House, Taiwan, built 2005-14,
based on an earlier proposal with Andrea Branzi for his �rm’s competition entry
for the Ghent Forum for Music, Dance and Visual Culture in 2004 (Figure 2.36)
(Motosugi &Mizunuma 2011). Some physical conceptmodels were used to generate a
continuous spatial structure, but �nal design was done by computationally generating
the catenoid minimal surfaces within given boundaries. �e challenging nature of
the project led to a protracted tendering process, failing four times to �nd a suitable
contractor. Ultimately, a stay-in-place formwork was chosen instead of a doubly
curved formwork. In this case, shotcrete was sprayed against the reinforcement and
an expanded metal mesh that served as a backstop. A �nal mortar coating provided a
smooth �nish. �e structure clearly relies on bending rather than membrane action,
so in this thesis, it is not strictly classi�ed as a shell.
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Figure 2.36: Taichung Metropolitan Opera House, Taiwan, 2014, and earlier stretched model
for the design of the Forum for Music, Dance and Visual Culture, Ghent, Belgium.

2.2.5 Pneumatic form finding

As mentioned, Isler presented the idea of shaping shells through in�ating and mea-
suring rubber membranemodels in 1959. Some years earlier, in 1954, he had designed
his �rst shell in this manner and later his commercially successful bubble shell, or
Buckelschale (Chilton 2000), which was constructed on a rigid formwork instead
(Figure 2.37). Isler (1967) initially suggested that pneumatic formwork was a logical
method of construction for such shapes, but that they still presented many technical
di�culties. He would in fact proceed to use air-in�ated formworks a decade later
(Section 3.4.1).

Around the same time, Saether (1961) also experimented with air-in�ated rubber
membranes. �ese models were also measured, but not used as a direct means of
design. Instead, measurements were compared to known geometrical shapes such as
the elliptical paraboloid, hyperbolic paraboloid and logarithmic elliptoids, in order
to establish analytical functions for further use (Figure 2.38). He concluded that
“there is no apparent limit to the number of di�erent elastic membranes which can
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Figure 2.37: Original in�ated rubber membrane model and interior of Eschmann Company,
�un, Switzerland, 1958.

Figure 2.38:Model cast from in�ated rubber membrane and analytical approximation
(Saether 1995).

Figure 2.39: In�ated model of shell with internal drainage points, hardened with GFRP (Otto
& Stromeyer 1962).

be approximated in this manner”, eliminating the “problem of physically measuring
or analyzing a funicular shape” (Saether 1961). He published about this approach
again in the 90s, but no longer discussing the physical modelling in any particular
detail (Saether 1995).
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Otto & Stromeyer (1962) show several in�ated membrane models, mostly as literal
scale models of air-in�ated structures, but also intended as structures that are sti�-
ened by applying GFRP (Figure 2.39), or, in other words, as air-in�ated formworks
(Section 3.4.1).

2.2.6 Hydrostatic form finding

João Francisco Lobo Fialho used both experimental and analytical work for the de-
sign of the 55m long Vilar Dam, spanning the Távora river in Portugal (Lobo Fialho
1956). �e funicular dam was designed using a hydrostatic form-�nding model, such
that membrane stresses would not exceed 5 MPa anywhere (Figure 2.40). Measure-
ment of the boundary conditions on site and shape of model were used to establish
approximate analytical expressions for the boundaries, generatrix and directrices.
�e varying thickness was also expressed analytically to improve the stress distri-
bution. �e work was carried out at the Laboratório Nacional de Engenharia Civil
(LNEC) in Lisbon, andmentioned at Isler’s lecture in 1959 by the laboratory’s director,
Ferry Borges. An interesting parallel are tension-loaded, funicular cable-net dams,
proposed by Otto et al. (1973), and as early as 1954.

Figure 2.40: Hydrostatic form-�nding model and scale model of the funicular design for the
Vilar Dam, Portugal (Lobo Fialho 1956, 1966).

In 1965, the Vilar Dam was inaugurated, but by then designed and constructed as
a conventional earthen dam. A major reason to decide against an arch dam had
been the alarming 1959 accident at the Malpasset Dam, near Fréjus, France, which
resulted in 423 fatalities a�er the dam had broken due to geological instabilities.
Nevertheless, Lobo Fialho & Rodrigues (1965a,b,c) presented and advocated the
design again (Figure 2.40). Based on a comparative study of di�erent types of dams
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for this location, they argued that the funicular dam was the best and most a�ordable
option, though they acknowledged that for this site, extensive geological studies
would be required. Akbari et al. (2011) provide an overview of developments in the
shape optimization of arch dams since, which have typically included additional
loading conditions, material behaviour and soil stability, to derive a shape.

2.3 Numerical form finding

Even though Frei Otto was skeptical of computers and their role in design (Songel
2010), it was his work that was instrumental to the development of all types of nu-
merical form-�nding methods: sti�ness matrix methods and force density methods
through their development for the Munich Olympia Park (Figure 2.41), and dynamic
relaxation through its use during his many collaborations with Ted Happold (1930–
1996). �ese methods are digital analogues to the physical form-�nding methods
presented in the previous section.

Figure 2.41:Munich Olympic Park, Germany, with stadium (top), sports hall (right) and
swimming pool (bottom), completed in 1972
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Since the 1960s, and with the advent of the computer age, research focused on
developing these numerical form-�nding methods, initially applied to the design
and analysis of prestressed and hanging cable-net roofs (Figure 5.1). �is coincided
with what is now considered to be the golden age of the �nite element method, 1962-
1972 (Felippa 2013). �ese earliest form-�nding or shape-�nding methods assumed
an initial, unloaded geometry, or cutting pattern. �is was relevant as it is practical
to erect cable-net roofs from given, uniformly spaced meshes. In essence, these were
�nite element methods for structural analysis with large displacements, but in the
context of form �nding have been referred to as sti�ness matrix methods.

Two seminal form-�nding methods were developed around this time; the force
density method by Klaus Linkwitz, Hans-Jörg Schek and Lothar Gründig from 1968
onwards at the University of Stuttgart, Germany; and dynamic relaxation by Michael
Barnes, David Wake�eld and Manolis Papadrakakis from 1971 onwards at the City
University London, UK. �e force density method was developed in competition
with sti�ness matrix methods.

2.3.1 Force density and stiffness matrix methods

Physical models were used to determine the shape of the roofs of the 1972 Munich
Olympic stadium. Initially, photogrammetric measurements of these models were
used to derive cutting patterns, but these were not su�ciently accurate (Figure 2.42).

Figure 2.42: Photogrammetric measurements of the Olympic Swimming Pool model, and
numerical shape �nding model (colours inverted) (Argyris et al. 1974).
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As a result, least squares methods were used to establish a digital model in static
equilibrium under constraints of unstressed equal mesh width (Gründig et al. 2000,
Linkwitz & Schek 1971), an approach that is referred to here as constrained form
�nding (Chapter 6). �e work was accelerated by the pressure of completing the
stadium roofs on time, and the fact that Prof. Linkwitz’ group was in competition
with that of Prof. Argyris, also at the University of Stuttgart.

In parallel, Argyris & Angelopoulos (1972) developed a method which assumed an
initial geometry and material properties. �ey realized the initial lengths could be
changed a�erwards to optimize the resulting prestresses without in�uencing the
�nal equilibrium shape. Ultimately, the western stadium roofs were calculated using
Linkwitz’ least squares method, while the roofs of the Olympic Swimming Pool,
Olympic Hall and the unbuilt eastern stadium roofs used Argyris’ (Figure 2.41).

Argyris et al. (1974) soon realized that “it is possible to develop a shape �nding
method [..] which does not consider the elastic properties of the structure”, citing
Siev (1963) and Schek (1974). �e latter, the force density method, was able to
produce general networks in static equilibrium by solving only one system of linear
equations, requiring no further iteration. �e equilibrium shape could now be found
geometrically, and any cutting patterns could be derived a�erwards. Later, this would
become increasingly relevant for tensioned membrane roofs where cutting patterns
are not obvious to specify in advance.

During the period 1972-1995, further development was funded by the German Re-
search Foundation, as part of the interdisciplinary research groups Sonderforschungs-
bereiche (SFB) 64 “Lightweight Tension Structures” (Linkwitz et al. 1984) and 230
“Natural Constructions, Lightweight Structures in Nature and Engineering”.

As a result, the constrained force density method was later applied to the timber
gridshell roofs of theMultihalle inMannheim (Figure 2.43), and the Solemar-�erme
in Bad Dürrheim, both in Germany (Gründig 1988, Gründig & Schek 1974). �e
unconstrained, linear method was used for the latter project as a starting point.

�e unconstrained force density method was �rst applied to the cable-nets of the
1979 King Abdul Aziz Stadium, Jeddah, Saudi Arabia (Figure 2.27), and the 1986
Hannover Aviary, Germany. �e �rst tensioned membrane project was the Olympic
Roof in Montreal, completed in 1987, although intended for the 1976 Olympic
Games. Widespread application of the unconstrained force density method was
found through its implementation in so�ware such as EASY by Technet from 1989
onwards for the design and engineering of tensioned membrane and air-in�ated
structures.

77



Figure 2.43:Multihalle, Mannheim, Germany and numerical constrained form-�nding
model (Gründig & Schek 1974).

A large number of methods have been presented since, as extensions or generaliza-
tions of the original force density method, such as the geometric sti�ness method
(Haber & Abel 1982), the updated reference strategy (Bletzinger & Ramm 1999) and
the natural force density method (Pauletti & Pimenta 2008). A recent method, thrust
network analysis, combines the force density method with principles of graphic stat-
ics for the form �nding of funicular shells (Block 2009). Early work was applied to the
Mapungubwe National Park Interpretive Centre, South Africa (Ramage et al. 2010),
and a range of structural prototypes and pavilions since (Figure 2.44) (Rippmann
2016).

Figure 2.44: Freeform Catalan thin-tile vault, Zurich, Switzerland (Davis et al. 2012), and the
Armadillo Vault at the 2016 Venice Biennale of Architecture, Italy (Rippmann et al. 2016).

A number of extended force density methods has been published in China in recent
years (see Chapter 5.2). Indeed, a 2006 special issue of the Journal of the International
Association for Shell and Spatial Structures on spatial structures in China cites four
hundred membrane structures built each year and growing (see also Section 3.9).
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Due to today’s wide availability of �nite element so�ware, the sti�ness matrixmethod
has been applied to the form �nding of shell structures more o�en than the force
density method. In these cases, the elastic sti�ness is set a value close to zero. �e
following three examples each used the �nite element program So�stik for this
purpose.

�e renovation of the Palacio de Cibeles (Cybele Palace), formerly the Palacio de
Comunicaciones, in Madrid, included a steel gridshell covering the inner courtyard,
completed in 2009 (Figure 2.45). �e shape, designed by Arquimática, was derived
from an in�ated balloon, constrained by the highly irregular plan of the courtyard.
Although the engineers, Schlaich Bergermann und Partner, initially made attempts
to rationalize the shape as a quadrangulated, translational surface, the �nal triangu-
lated gridshell was modelled as a hanging membrane using numerical form �nding
(Schlaich et al. 2009, Schober 2015). �ey had taken a similar approach for the 2007
Odeon Munich roof by Ackermann and Partner.

�e Elephant House at the Zurich Zoo, Switzerland, byMarkus Schietsch Architekten
and Walt + Galmarini, was completed in 2014. �is �ligree timber shell has 540
mm thick ribs spanning up to 80 m (Figure 2.45). Starting from a �at pattern, form
�nding was carried out as a hanging model while adhering to constraints on the
maximum building height and deformations along the open edges at the perimeter
(Kübler 2014).

Figure 2.45: Palacio de Cibeles, Madrid, Spain, 2009, and the Zurich Zoo Elephant House,
Switzerland, 2014.
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2.3.2 Dynamic relaxation

�edynamic relaxation (DR)method was initially proposed for the structural analyis
of portal frames by Day (1965). In 1966, Barnes had completed his Master’s thesis on
cable-net analysis, and started using DR a�er reading a 1969 internal paper by Day
and Bunce for the engineering �rm Arup, soon publishing about its application to
cable networks himself (Barnes 1971). In 1975, while lecturing at the City University
London, Barnes invited his studentsWake�eld, Topping and Papadrakis to undertake
doctoral studies under his supervision and suggested their topics in the area of DR
and tension structures, before completing his own (Barnes 1977).

Barnes met with Ian Liddell and Ted Happold from engineering �rm Buro Happold
while presenting at conferences in Stuttgart and Montreal in 1976. �is began a
series of projects, all involving Frei Otto and Buro Happold, in which Barnes under-
took analysis and patterning for the contractors on behalf of the engineering �rm
Ingenieurplanung Leichtbau (IPL). Many of these occurred during the late 1970s
construction boom in Saudi Arabia, resulting from the ongoing global energy crisis
(see also Section 3.4.1).

Figure 2.46: King’s O�ce, Council of Ministers and Majlis Al Shura (KOCOMMAS) project
of Frei Otto and Buro Happold, hanging model and numerical form-�nding model (Barnes

1977).

�e �rst and highly ambitious application of DR was the hexagonal lattice shell for
the King’s O�ce, Council of Ministers and Majlis Al Shura (KOCOMMAS) (Figure
2.46). �e project started in 1974, involving Ove Arup as well, but was cancelled a�er
the death of King Khalid in 1982 (Walker & Addis 2005).

�e second was the analysis of the cable network for the King Abdul Aziz University
Sports Hall in Jeddah, Saudi Arabia; the �rst built structure analyzed using DR,
following initial hanging chain and soap �lm studies (Figure 2.27). As mentioned, it
was also the �rst built structure using the unconstrained force density method.
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Figure 2.47:Munich Zoo Aviary and numerical form-�nding model (Barnes &Wake�eld
1984).

�is project was soon followed in 1980 by the cable-net enclosure of the Munich Zoo
Aviary (Figure 2.47) and the 1985 Diplomatic Club for the Diplomatic Quarters in
Riyadh, Saudi Arabia (Figure 2.48). �e latter project consisted of three membrane
structures, two cable networks, and another cable network with stained glass as the
central focus of the complex (Barnes 1988).

Like the force density method, wider use of dynamic relaxation was found through
so�ware. Buro Happold’s in-house program Tensyl was developed from 1980 on-
wards, and when Wake�eld le� to co-found Tensys with Barnes, this was followed
by Tensys’ in-house program inTENS from 1990 onwards. Several built examples of
tensioned and air-supported membrane structures from both �rms are shown by
Barnes (1994) and Wake�eld (1999).

DR has been applied to the analysis and mesh relaxation (but not the form �nding)
of gridshells such as the 2000 Great Court roof of the British Museum (Figure 1.3)
and the 2002 Downland Gridshell, both in the UK (Harris et al. 2003, Williams
2001). It was �nally used for the form �nding of the gridshell roof of the 2011 Dutch
National Maritime Museum in Amsterdam (Figure 2.49), designed by Ney+Partners
(Adriaenssens et al. 2009) and again (using �nite element program GSA) for the
2015 terminal of Arnhem Central Station in the Netherlands, by UN Studio and
Arup (Figure 2.50). �is terminal was designed by establishing boundary conditions
based on a knot, and then “tuning the surface and edge stresses and applying surface
pressure at speci�c locations” (Van de Straat et al. 2015). �e resulting “minimal
surface” was intended to optimize the span and organize pedestrian �ow through
the terminal (Wallisser 2009). �e tendering of the entire project failed in 2008 a�er
�ve parties had withdrawn and a sixth bid came in at twice the budget. Individual
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Figure 2.48: Diplomatic Club (now Tuwaiq Palace), with stain glass cable network at the
centre, Riyadh, Saudi Arabia, 1985, and form-�nding model of outer membrane structure, or

Banqueting Roses (Barnes 1988).

Figure 2.49: Dutch National Maritime Museum, Amsterdam, 2011; and design for the new
Mexico City international airport, c. 2014.

parts such as the terminal were then separately tendered out. Although originally
envisioned as a concrete shell, the roof and most complex parts were ultimately built
in steel by shipbuilder Centraal Staal (now CIG) (Figure 2.50) (van Dijk et al. 2013).
Coincidentally, the curved concrete cladding panels of the roof were cast on a �exible
mould (Hoppermann et al. 2015).
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Figure 2.50: Steel elements for the shell and �exible mould for the cladding of Arnhem
Central Station, Netherlands, 2015.

Particle-spring form �nding is a recent approach combining the idea of Gaudí’s
hanging models with principles similar to dynamic relaxation (Kilian 2004, Kilian
& Ochsendorf 2005). Both methods were implemented in Kangaroo, a plugin for
Grasshopper, which has been applied to the new international airport for Mexico
City, designed by Foster+Partners. �e structure is a large, double-layered steel
gridshell, or spaceframe (Figure 2.49).

2.4 Freeform shapes

�e unbuilt Táchira Club by Fruto Vivas and Eduardo Torroja has been considered
to be one of the �rst freeform shell designs, even though it can still be de�ned as a
generalized translational surface, based on only two equations (Figure 2.13, Section
2.1.3). It was also developed with structural considerations inmind, and usingmodels
for analysis along the way (Escrig & Sánchez 2005). Whatever the case, Andrés (2009)
points out that Torroja anticipated a paradigm shi� in shell design: “And thus it is
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possible to build successfully forms so varied [. . . ] that is only the announcement and
proclamation of the revolution that is approaching in the �eld of architecture, whose
vocabulary of plastic forms is opening and widening with rapidity and imaginative
fecundity unknown in all the history of Construction [sic].”

Figure 2.51: Construction and �nal interior of TWA Flight Center, New York, US, 1962.

�e 1962 Trans World Airlines (TWA) Flight Center (Figure 2.51), designed by Eero
Saarinen (1910–1961) and Associates and engineered by Amman &Whitney, is per-
haps the earliest realized freeform concrete shell (Sasaki (2005), although considering
it a personal favorite, objects to even calling it a shell). Rather than being mathemati-
cally de�ned, or resulting from physical form �nding, its shape was the outcome of a
purely sculptural design process. �e terminal was intended to resemble a bird in
�ight. A series of clay models and cardboard forms were used to arrive at the �nal
design. �e surface was then rationalized as four individual surfaces, generated by
translating two intersecting arcs along a longitudinal curve of varying, but smoothly
transitioning arcs. �e shells have clear spans of 67 and 91 m with minimum thick-
nesses of 178 and 279mm. �e formwork consisted of steel sca�olding with adjustable
jacks, supporting timber shuttering and boards (Figure 2.51) (Anderson et al. 1964).

�e freeform Eastman Kodak Pavilion for the 1964-1965 New York World’s Fair was
a 5’600 m2 shell with “undulating surfaces, not de�nable geometrically” and was
referred to as the “Flying Carpet” (Figure 2.52). Conceived as a lunar landscape, it
was designed by Will Burtin using a sculptured plastic model, and developed by
architectural �rm Kahn and Jacobs. �e shell spans up to 34 m and has a thickness
of 152 to 356 mm, averaging 279 mm (Zetlin 1964, 1966).

More recently, Sasaki (2014) has been involved in �ve freeform concrete shell struc-
tures. He was frustrated with the design process of the unbuilt 1998 National Grand
�eater in Beijing China, with Arata Isozaki: “there is very little merit in just using
repeated trial-and-error to structurally analyze a particular shape provided by an
architect, and so just doing it all again would be an immense waste of e�ort”. He then
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Figure 2.52: Eastman Kodak Pavilion, World’s Fair, New York, 1964-1965.

developed an optimization method which minimizes the strain energy of a doubly
curved surface by changing the position of the nodes or control points. Sasaki sees
this method, which he calls “sensitivity analysis”, as a modern replacement to Gaudí’s
experimental models (Sasaki 2005). He applied it to another project with Isozaki: the
2005 Kitagata Community Centre in Gifu, Japan (Figure 2.53). �e 25 m span, 150
mm thick shell, was built using the reinforcement bars as stay-in-place formwork.

Figure 2.53: Kitagata Community Centre in Gifu, Japan, 2005.

�ree subsequent projects were all built with doubly curved timber formwork on
a system of steel shoring, not unlike the TWA Flight Center. �ese are the 70 m
span, 400 mm thick 2005 Island City Park “Gringrin”, in Fukuoka, Japan; the 20
m span, 200 mm thick 2006 Kakamigahara Crematorium in Gifu, Japan; and, the
80 m span, 400 mm thick 2009 Rolex Learning Centre in Lausanne, Switzerland.
Sensitivity analysis was applied to each of these, including an early design for the
Rolex Learning Centre (Sasaki 2005). Further structural design and engineering was
carried out by Bollinger + Grohmann Ingenieure (Grohmann et al. 2009).
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An earthen formwork was used for the ��h project, the 2010 Teshima Art Museum
in Kagawa, Japan. �is 43 m span, 250 mm thick shell was imagined as a water
droplet, and optimized using sensitivity analysis. �e earthen formwork was coated
with mortar and its shape controlled through measurements, before casting and
eventually excavating the shell (Figure 2.54) Sasaki (2014).

Figure 2.54: Teshima Art Museum in Kagawa, Japan, 2010.

Figure 2.55: Spencer Dock Bridge, Dublin, Ireland, 2010.

�e 2010 Spencer Dock Bridge, spanning the Royal Canal in Dublin, Ireland, was
designed by Amanda Levete Architects and engineered by Arup. Its �uid, free-form
shape was inspired by the manta ray. �e concrete bridge was constructed on a CNC-
milled EPS formwork, supported by sca�olding. �e EPS foam blocks, produced
by Nedcam, were coated with layers of polyurea and their seams were �lled with
epoxy putty (Lavery 2013). �e intention was to reuse or recycle the EPS foam. Upon
removal of the formwork, the foamwas too damaged and dirty to reuse. Furthermore,
separating the foam from the polyurea coating was deemed too costly to allow for
recycling (Verhaegh 2010).
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2.5 Formwork systems

�roughout this chapter, �gures have shown the formwork method of construction
formany past shell structures. �e concrete is poured or sprayed, and this can be done
in-situ or for prefabrication, but requires some kind of formwork regardless. Here,
the types of formwork methods are categorized and additional information is given
where needed. �e emerging technology of 3D printing is also discussed as it applies
to shell structures. Beyond these methods, Chapter 3 provides a comprehensive
overview of instances in which �exible surfaces were used to construct shells.

2.5.1 Timber formworks

As seen throughout this chapter, the earliest and still most common solution to
form shell structures is the use of timber formworks. Early shoring and sca�olding
was made of timber as well. Today, these have been replaced by steel or aluminium
prefabricated, modular and adjustable systems. �is falsework supports a system of
timber shuttering and sheeting. Timber shuttering is typically made of I-beams, but
for curved surfaces, timber trusses and curved glulam beams have been used as well.
Formwork companies such as Doka and Peri market their expertise in this approach
as a product rather than a service; DokaShape and Freeform Formwork respectively.
While traditional formworks for hyperbolic paraboloids and hyperboloids rely on
straight timber following their generator lines, developments in digital fabrication
now allow mass customized timber formwork for freeform shapes. Specialist con-
sultancy DesignToProduction, for example, has worked on such formworks for the
Rolex Learning Centre, mentioned in Section 2.4, and the 2006 Mercedes-Benz
Museum in Stuttgart, Germany, designed by UN Studio.

2.5.2 Slipforms

Slipforms are e�ciently used for vertical concrete structures such as cores of high-
rises, and in terms of shells, for cooling towers (Figure 2.10) and arch dams (Figure
2.56). �ese systems are so widely required, that they have been developed as stan-
dardized products by formwork companies such as Doka, Meva and Ulma.
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Figure 2.56: Doka D34 dam formwork, applied to the Sarvsfossen dam of the Skarg power
station, Norway, 2014.

2.5.3 Stay-in-place formworks

If substantial enough, the shell’s reinforcement can act as a self-supporting formwork
system. �e reinforcement cage would generally be too coarse and thus requires
a steel mesh or some other form to hold the concrete. �ese meshes or forms
can be attached directly or suspended from the reinforcement. If the mesh is the
predominant reinforcement material, and any rebars serve more as a skeletal cage
to hold the mesh in place, the resulting composite is referred to as ferrocement. In
the context of sprayed concrete, or shotcrete, such a mesh might be referred to as
a backstop. Unfortunately, there is no consistent term for this type of formwork
system.

Examples in this chapter include the 1926 Zeiss Planetarium in Jena, Germany (Figure
2.2), the 2005 Kitagata Community Centre in Gifu, Japan (Figure 2.53) and the 2014
Taichung Metropolitan Opera House (Figure 2.36). In addition, as many as ninety
earth houses, designed by Peter Vetsch, have been built in Switzerland using this
type of formwork technique (Figure 2.57). At ground level, the concrete is sprayed,
while at roof level it is poured. Due to the use of sprayed concrete, stay-in-place
formworks require additional �nishing.
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Figure 2.57: Earth house under construction in Giswil, Switzerland, 2006, and earth houses
in Dietikon, Switzerland, 1993.

2.5.4 Earthen formworks

As mentioned at the start of Section 2.2, Isler (1956, 1960) built an atomic shelter
on an earthen mould in 1955 (Figure 2.58). He continued experimenting with 6 m
polyester shells, constructed on sand mounds, for use in modular storage buildings
of the Swiss military (Chilton 2000).

Figure 2.58: Atomic shelter under construction and a�er testing, built as 4 m span, 200 mm
thick spherical and semi-spherical domes, Germany, 1955.

Ulrich Müther (1934–2007) designed lifeguard houses, made from two halves pre-
fabricated on an earthen mould (Figure 2.59). �ey were built in Binz auf Rügen,
Germany; �rst in 1975 (demolished in 1993) and again in 1981. Coincidentally, Müther
continued building shells well into the 1980s and early 1990s, but he is not o�en
mentioned alongside Isler as a succesful shell builder beyond the golden era.
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Figure 2.59: Lifeguard station, 70-165 mm thick, Binz, Germany, 1975.

Other examples of earthen formworks include the 1958 Philips Pavilion (Figure 2.8)
and the 2010 Teshima ArtMuseum (Figure 2.54). �e latter is particularly remarkable
considering its scale when compared to the other examples, which are limited to
either small structures, or modular and prefabricated segments.

2.5.5 Foam formworks

A recent alternative to timber sheeting has been to use high density foam. �e foam
is still supported by a system of timber shuttering and steel sca�olding, but allows
CNC machining of this lightweight, a�ordable material.

An early large-scale application is the 2006 Cli�s of Moher Visitor Centre in Ireland
(Figure 2.60). �is 25 m span, 750 mm thick subterranean dome has a central roof
light, and featured double curvatures deemed too complex for traditional timber.
Instead, the 907 m2 surface area was covered by about three hundred high-density
EPS formers, provided by Cordek. �ey were covered by bonded rubber mats before
pouring concrete (Seaton 2007).

�e 2010 Spencer Dock Bridge (Figure 2.55) has become a standard reference when
discussing disadvantages of CNCmilled foam formworks, and proposing alternatives.
Despite earlier intentions, the EPS foam could not be recycled; a problem pointed
out by Verhaegh (2010) and addressed by Oesterle et al. (2012) who developed a
reusable wax for robotic milling, or “zero-waste formwork”. Robotic hot-wire cutting
has been suggested by Filipe Martins et al. (2015), to address the issue of extensive
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Figure 2.60: Cli�s of Moher Visitor Centre, Ireland, 2006.

milling times, although wire cutting is limited to ruled surfaces. To circumvent
this drawback, Søndergaard et al. (2014) and Rust et al. (2016) have investigated
the bending or hanging of the wire during cutting, to allow for greater geometric
freedom.

2.5.6 3D printed formworks and shells

Recent years have been dominated by developments in 3D printing, also in construc-
tion. In terms of shell construction, there are three ways in which 3D printing could
be used: printing the formwork, printing reinforcement as stay-in-place formwork,
or directly printing the shell.

Printed lost formworks for straight and singly curved wall construction were pro-
posed around the turn of the century by Khoshnevis (2004), as part of his 3D printing
technology referred to as “contour cra�ing”. Similar formworks have been printed
by companies such as Winsun in China, and CyBe in the Netherlands. Others with
large printers are: D-Shape, Italy; Eindhoven University of Technology, Netherlands;
Loughborough University, UK; REX|LAB, Austria; TotalKustom, US; and, XtreeE,
France. �ese machines use cementitious printing materials, with the exception of
D-Shape which uses a magnesium-based binder.
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Printed, stay-in-place formwork, referred to as “mesh mould” was proposed by Hack
& Lauer (2014) for the construction of doubly curved walls. A similar formwork
was developed by the company Branch Technology in the US, with their technique
called “cellular fabrication”. �ey recently organized a design competition to use
their technology (Figure 2.61) (Dezeen 2016). Yet another similar technology using
welding steel instead of polymers is “anti-gravity additivemanufacturing” by Novikov
et al. (2014).

Figure 2.61: Proposals for 3D printed thin curved slab or shell houses: Landscape House by
Universe Architecture using D-Shape printer, 2013; Curve Appeal by WATG’s Urban

Architecture Studio using segmented cellular fabrication, 2016.

Tam et al. (2015) directly printed small shell models along their principal stress lines,
but their process, called “stress line additive manufacturing”, still required a milled
wooden formwork. A proposal for a 3D printed house featuring curved surfaces
using a D-Shape printer (Figure 2.61) (Dezeen 2013a), has recently progressed to
produce a scale model prototype. In this case, the house is printed in the powder
bed, which in a way can be seen as an earthen formwork. ESA and Foster+Partners
proposed printing a shell for a lunar base directly onto an air-in�ated formwork
(Figure 2.62) (Dezeen 2013b).

To avoid the need for formwork, Khoshnevis (2004) already suggested the direct
printing of a shell using Nubian vaulting techniques. Here, bricks are placed in layers
at an angle against a back wall. �e Great Hall of the Palace of Taq-i Kisra in Figure
2.16 is a historical example in traditional masonry. His recent joint proposal with
NASA for a lunar base uses the same principle (Figure 2.62) (Khoshnevis 2012). In
the context of this proposal, they printed a small model of a dome in staggered layers.
�e same technique was suggested for the winning entry of NASA’s 2015 3D-Printed
Habitat Challenge, but printed in ice (Figure 2.62) (NASA 2015).
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Figure 2.62: Proposals for 3D printed extraterrestrial bases: NASA and University of
Southern California, using contour cra�ing with Nubian vaulting or staggered layering, 2012;
ESA and Foster+Partners using D-Shape printer with air-in�ated formwork, 2013; and,

winning entry of NASA’s 3D-Printed Habitat Challenge, 2015.

2.5.7 Cost of formwork

Historical and recent cost estimates have been converted to cost in 2016 currency for
a UK/US construction market in this section. �e cost of formwork can be 35 % up
to as much as 60 % of the total cost of a general concrete work (Johnston 2008), and
for traditional applications is between 21 and 71 €/m2 (van Dijk et al. 2013).

For shell structures, this generally seems to lie between 20 and 50 %, given the
following references.

For the largest ever concrete dome and shell, the 1958 CNIT shell shell in Paris, France,
and the 1976 Kingdome in Seattle, US (Figure 8.3), this was likely around 50 %. In
the former case, Nicolas Esquillan (1902–1989) commented that in his experience
in France, formworks amounted to half of the shell’s cost, also accounting for reuse
(Isler 1960). In the latter, Chistiansen (1988) gives an example estimate for a smaller
version of one of the segments of the Kingdome, although for his later work on the
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identically constructed 1990 Sundome in Washington, US, this went up to an outlier
of 73 % (Randall & Smith 1991). �e same proportion of 50/50 is true for the 1962
TWA Flight Center in New York, US (Figure 2.51) (Anderson et al. 1964), and the
2013 Centro Ovale in Chiasso, Switzerland (Figure 2.3) (Muttoni et al. 2013).

Chistiansen (1988) quotes savings between 31 % and 48 %. �is is based on having
built c. 139’000 m2, and using estimates of square and saddle hypar roofs, with
formwork that can be reused up to four times. Isler (1960) claimed that, based on
having built c. 13’000m2 thus far, the cost of formwork represented between 20 and 25
% of the total cost of the shell, up to 30% in other countries, depending on local prices.
�e low relative cost of Isler’s system can be attributed to the reuse of standardized
glulam shuttering pro�les, and use of insulation boards as lost shuttering (Chilton
2000).

Table 2.3 shows absolute costs for shell construction excluding foundations and
�nishing, corrected for in�ation. �e percentage of that cost for the formwork is
also given. Both Ketchum (1964) and Chistiansen (1988) claim reuse of �ve to six
or at least more than four times is necessary for economical formworks, so their
formwork cost has been multiplied by �ve, under the assumption that they included
such reuse in their estimates. Overall, the formwork for vaults costs 170–300 €/m2
and for hyperbolic paraboloids 110–420 €/m2. By comparison, the formwork for the
freeform TWA Flight Center came at an exorbitant cost of about 725 €/m2.

Based on correspondence with Zwarts & Jansma Architects (Verbeek 2015) and a
formwork contractor regarding the Extended Waalbridge, SO-IL Architects regard-
ing an undisclosed shell project (Lamyuktseung 2015) and a formwork contractor
regarding the NEST HiLo project (Chapter 12), more recent estimates were obtained.
�e formwork contractors have to remain anonymous. A doubly curved one-sided
custom timber formwork will cost 400-500 (Verbeek 2015) up to 600-800 €/m2
from low to high curvature and including shoring , or 550 €/m2 excluding shoring
(Lamyuktseung 2015). A doubly curved one-sided milled foam formwork for the
same projects will cost 800 €/m2 including shoring (Verbeek 2015), or 820 excluding
shoring (Lamyuktseung 2015). Smaller, moderately curved elements would cost
440 €/m2 in our experience, or, according to Schipper & Grünewald (2014), about
300-560 €/m2.

An upper limit for the cost of any particular formwork for a doubly curved surface
may be 1’000-1’200 €/m2 (van Dijk et al. 2013).
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However, while the above costs were provided by formwork contractors and that cost
would likely double for the entire shell, subsequent initial bids from �ve construction
managers and general contractors, for two of the mentioned projects, actually came
in at average of 3’800 €/m2 with a standard deviation of 1’100 €/m2. �is re�ects the
perceived risk and complexity of such structures today, rather than the actual cost. It
might explain why recent projects such as Arnhem Central Station (Figure 2.50) and
the Taichung Metropolitan Opera House (Figure 2.36) failed to tender as concrete
shells made with timber formworks, and instead were realized as a steel shell and
as a concrete shell with stay-in-place formwork (which is basically building a steel
structure, to be covered by concrete).

In summary, the cost of timber formworks for shells has been about 110-420 up to
725 €/m2 for complex curvatures. Today, this range has moved to 400-800 €/m2,
depending on the curvature. For milled foam formworks the cost is similarly at about
300-800 €/m2, though dependent on scale rather than curvature. An upper limit for
any type might be 1’000-1’200 €/m2, but perceived risk and complexity may lead to
even higher prices during tendering. No information was found for stay-in-place
and earthen formworks.

2.6 Discussion

�e historical overview of shells, their method of design and method of construc-
tion, has revealed few examples of thin concrete shells designed through form �nd-
ing: twenty projects by Heinz Isler, the Basento Bridge by Sergio Musmeci and the
Stuttgart 21 canopies by Frei Otto. �e latter two, initially designed through soap
�lms, are globally anticlastic. Isler’s shells, designed using hanging models, are gener-
ally synclastic, but along edges, or where multiple shells join, may feature negative
curvature. Perhaps surprisingly, there is no known instance of a thin concrete shell
designed using numerical form �nding. �is is explained by the fact that form �nd-
ing, and certainly computational equivalents, developed directly a�er the golden era
of concrete shells came to an end.

Figure 2.63 shows that during the 1970s the German term “Form�ndung” was intro-
duced and increasingly used, due to the works by Frei Otto. Initially, it was translated
to “form�nding”, which remained popular for the duration of the German research
programs and early applications of numerical form �nding to tensioned membrane
structures. �e term “form �nding” picked up, and overall use of such terminol-
ogy increased again halfway through the 1990s, presumably tracking advances in
computer aided-design and architectural trends such as blobitecture.
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Figure 2.63: Relative, historical occurence in English literature of the term “form �nding”
and synonyms, plotted cumulatively (Ngrams 2016). Diplomatic Club and Water pavilion

shown in Figures 2.48 and 1.1 respectively.

Figure 2.64: Relative, historical occurence in English literature of the terms “shell structure”,
“concrete shell”, versus “form �nding” and its synonyms (Ngrams 2016).

Figure 2.64 compares the historical use of the term “form �nding” and its synonyms
against that of “shell structure” and “concrete shell”. �e International Association
for Shell Structures (IASS) added the words “and spatial” to its name in 1970, signal-
ing the shi�ing interests from shell structures to other systems such as gridshells,
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spaceframes, cable nets and membranes. In essence, concrete shells missed the boat
on developments in both physical and numerical form �nding for the generation
of e�cient, natural shapes. �is begs the question to what extent they might have
bene�ted, or might still bene�t, from these design techniques.

On the other hand, alternative structural systems in timber or steel have also been
designed as mathematical or freeform shapes, with only few examples found using
form �nding (Table 2.4).

project year type method
Multihalle, Mannheim 1974 timber gridshell hanging model
Solemar-�erme, Bad Dürrheim 1987 timber gridshell force density method (custom)
Toskana�erme, Bad Sulza 1999 timber gridshell
Odeon, Munich 2007 steel gridshell sti�ness matrix method (So�stik)
Cybele Palace, Madrid 2009 steel gridshell sti�ness matrix method (So�stik)
Mapungubwe National Park Interpre-
tive Centre

2009 masonry shells graphic statics,
thrust network analysis (custom)

National Maritime Museum, Amster-
dam

2011 steel gridshell dynamic relaxation (custom)

Elephant House, Zurich 2014 timber shell sti�ness matrix method (So�stik)
Arnhem Central Station 2015 steel shell dynamic relaxation (GSA)
Chadstone Shopping Centre 2016 steel gridshell dynamic relaxation (custom)

Table 2.4: List of permanent shell projects, designed using form �nding, other than concrete
shells.

Figure 2.65: Span versus thickness (slenderness) of thin concrete shells mentioned in this
chapter. Grouped by method of generation and type of curvature.
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Figure 2.65 shows the rise and thickness of the thin concrete shellsmentioned through-
out this chapter for which the data was available. Isler’s Deitingen gas station and
Candela’s Xochimilco Los Manantiales restaurant are highlighted as seminal ref-
erences for what are considered to be an e�cient synclastic and anticlastic shell
structure.

Mathematical or natural synclastic shapes seem to have or be capable of similar
slenderness. One would expect the synclastic shapes of Isler to be more slender. �e
e�ciency in his designs appears to translate more in the lack of edge beams and
lower requirements for reinforcement than overall slenderness.

For anticlastic shells, Tomás &Martí (2010b) show that it is possible to optimize even
Candela’s shells when departing from the hyperbolic paraboloid shape. However, the
only natural anticlastic shapes, the Basento Bridge and Stuttgart 21, have not been
able to capitalize on this supposed e�ciency of natural shapes, although both are
large infrastructural projects, rather than purely shell roofs, so the comparison is not
entirely fair.

�emost obvious conclusion from Figure 2.65 is the apparent material ine�ciency of
purely freeform shapes, although they are compared to some of the thinnest known
shells.

2.7 Conclusion

Based on this chapter and its references, the following observations are made regard-
ing thin concrete shells and their design:

• mathematical shapes have virtually dominated the design of shell structures,
and were the only type until the late 1960s;

• mathematically, most of these doubly curved shapes can be classi�ed as quadrics
or conoids;

• natural shapes, resulting from physical form �nding, were only applied by
Heinz Isler to twenty of his projects, and by Sergio Musmeci and Frei Otto to
one project each;

• the projects of Frei Otto were instrumental in the development of all three
common types of numerical form �nding, despite, ironically, his own misgiv-
ings;
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• no thin concrete shell designed by numerical form �nding was found, which
could largely be due to the disappearance of such structures at a time when
form �nding was �rst developed;

• freeform shapes, o�en inspired by animal or other natural form, have been
built around 1970 and in the past decade by Mutsuro Sasaki, but such shapes
have not approached the slenderness achieved by mathematical and natural
shapes; and,

• there is ambiguity in the de�nition of “free form” which has been applied to
complex mathematical shapes as well.

Apart from concrete shells, surprisingly only ten permanent shell structures in timber
or steel were found that derived their shape from some physical or numerical form-
�nding process.

On a side note, literature on form �nding o�en refer to Isler’s, Otto’s and Antoni
Gaudí’s works without providing context, suggesting they were isolated in a way.
However, both Isler and Otto refer to catenary or hanging models associated with
Gaudí, which, through nineteenth century German and eighteenth century English
textbooks can be traced back to Hooke’s original hanging chain.

Regarding the construction of thin concrete shells, the following observations are
made:

• timber formworks and stay-in-place formworks have dominated the construc-
tion of shells and are the default methods even today, though in the former
case milled foam has replaced timber sheeting in some instances;

• even when correcting for in�ation, the cost of timber formworks has increased,
partially explaining the decline in concrete shell construction;

• milled foam formworks seem to be less competitive to timber formworks,
although multiple developments are underway to improve upon the use of
milling or the foam;

• perceived risks and complexity of concrete shells made with timber or foam
formworks has led to protracted or failed tendering processes in several recent
instances;

• earthen formworks have been used in a few cases, generally to produce prefab-
ricated segments of a shell;
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• 3D printing can be used in three ways to construct shells, and has mostly been
proposed for extraterrestrial application; and,

• there is no substantial prototype for a 3D printed shell yet, though one is likely
to appear within the next few years, given the momentum in the development
of the technology.

�e main conclusion is that at this point, timber or milled foam formworks cannot
bring back concrete shells in a substantial manner. Furthermore, freeform shapes
may lead to uneconomic designs, even if they are post-rationalized through struc-
tural optimization. Instead, if shells are to return in large numbers, they should be
generated through traditional mathematics or form �nding. Form �nding allows for
a greater variety in shape, and may thus still accommodate contemporary tastes for
complex geometry. To address the subsequent problem of construction, the reader is
referred to Willard Oberdick’s notion of a “form-giving device”, where the method
of construction is derived from how the design is generated through form �nding.
Otto and Isler implied the same in their experiments on air-in�ated models. �ese
construction methods are referred to as “�exible formworks”, discussed in the next
chapter.
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�erefore we should not permit [concrete] shells to vanish, but rather
give them a future, give the role back to them they had in the past. �ere
is no reason, why it should not be possible to develop manufacturing tech-
niques for shells which suit the requirements of today, in order to build
with them economical light shells. Certainly this would also result in new
and interesting shell geometries.

A�er all we have today at our disposal not only the conventional
wooden falsework and shuttering [. . . ]. If we add all that with phantasy
[sic] and with the desire to build light and versatile, concrete shells will
de�netely [sic] enjoy a come-back.

— Jörg Schlaich, 1985

Why not accept that in recent years concrete shells have lost ground
[. . . ] but that fortunately newmaterials have stimulated a revival. [. . . ] No
question, the future of shells is steel grids, glass cover and textilemembranes
but not concrete.

— Jörg Schlaich, 2013





CHAPTER THREE

Flexible formworks for shells

�e use of fabrics and meshes to create concrete structures can be traced back as far
as the turn of the nineteenth century; the latter part of the Industrial Revolution.
Necessary conditions for the development of fabric formwork were the industrial
production of textiles, the rediscovery of concrete and the invention of reinforced
concrete. Moreover, it was the abundance, quality, low cost and widespread availabil-
ity of their ingredients: natural �bres, cement and steel. Among many of these early
�exible formwork concepts, the Ctesiphon system of construction for barrel vaults
and the Airform system for domes were the most successful.

At the end of the golden era of concrete shells, from the 1960s onward, the cost of
labour, steel and particularly timber dramatically increased. �is made traditional
timber formworks unattractive, and brie�y led to academic experimentation with
�exible formworks, such as the use of gridshells and cable nets as falsework. �e
arrival of a�ordable synthetic �bres in the same period proved crucial to the further
development and use of air-in�ated (pneumatic) formworks for concrete domes,
with tens of thousands having been built since.

More recently, the seminal work since the early 1990s by Prof. Mark West at the
Centre for Architectural Structures and Technology (CAST), University of Manitoba,
in Winnipeg, Canada, coincided with the arrival of the internet, and thus was widely
disseminated. His work received a great deal of attention and created awareness of
the broad potential and rich history of fabric formworks. In turn, this has led to both
academic and professional interest in the topic, including their application to the
construction of shells.
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�is chapter presents an overview of �exible formworks as they were applied in
particular to the construction of thin-shell structures1. More general, comprehensive
historical overviews of fabric formwork can be found in Veenendaal et al. (2011) and
Veenendaal (2016). Schipper (2015) provides an overview of related �exible surface
moulds, supported on a bed of actuators.

Section 3.1 reviews possible categorizations of fabric or �exible formworks. �e
�rst sections place an emphasis on fabric formworks: hanging formworks including
inverted systems, and prestressed formworks are discussed in Sections 3.2 and 3.3
respectively; pneumatic formworks in Section 3.4. �e remaining sections discuss
alternatives to fabrics: bending-active formworks, or gridshells, in Section 3.5; mesh
formworks in Section 3.6; and discrete tensile systems such as cable-net falseworks
in Section 3.7. �e literature study ends with a technical summary and historical
analysis in Sections 3.8 and 3.9, before drawing some conclusions in Section 3.10.

3.1 Categorization

Abdelgader et al. (2008) distinguish four categories of fabric formworks, grouped by
common applications: mattresses, sleeves, shuttering and open troughs. However,
fabric-formed shells do not �t in any of these categories, as the formworks are always
de�ned as being �lled.

A broader categorization was suggested in Veenendaal et al. (2011), based on the
question if and how the fabric is (pre-)stressed and supported, and whether the
concrete is applied as a thin layer, or by �lling the formwork. �is results in ten types
of formwork, each with a unique kind of geometry for the resulting concrete (Figure
3.1).

Yet another categorization was o�ered by Pronk&Dominicus (2011, 2012) in the form
of eighty-�ve ways to manipulate a �exible formwork: a prestressed or air-in�ated
surface can have di�erent types of curvature, di�erent ratios of prestress, can interact
with other such surfaces as well as rigid objects, and can undergo di�erent loading
conditions to help shape it further.

1�is chapter is partially based on Veenendaal et al. (2011) and Veenendaal (2016).
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Figure 3.1: Taxonomy of fabric formwork and formwork liners. Types in this chapter against
white background. Adapted from Veenendaal et al. (2011).

3.2 Hanging fabric formworks

A �exible membrane will de�ect substantially under any load that is perpendicular
to its surface. To counteract or avoid this e�ect, prestress in its plane or some kind of
opposite pressure is required. �e simplest, therefore, is to allow the membrane to
hang under its own weight, which is perhaps why this is the earliest type of fabric
formwork to be invented and used. At �rst, such hanging formworks were used to
construct �oors. �is was soon followed by the idea of casting shells on them, either
directly, or by inverting the resulting form; a literal translation of Hooke’s hanging
chain.

3.2.1 Floor systems

On September 8th, 1897, Gustav Lilienthal (1849–1933) obtained a patent for a �re-
proof ceiling in the German Empire, followed by other patents in Switzerland, the
United States and the United Kingdom. It is the �rst known instance of fabric
formwork.
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His invention, doubling as a �oor system, consisted of “spreading some pliable but
su�ciently impermeable fabric, [cardboard] or paper over the beams intended to
carry the ceiling that is to be built, of covering the fabric with wire-netting [or vice
versa], and of pouring concrete on the top of the covering thus formed” (Lilienthal
1899). �e fabric is “not tightly strained but [is] allowed to hang in catenary form
between the beams” and covered with wire netting (Figure 3.2) (Lilienthal 1898).

Figure 3.2: Lilienthal’s �reproof ceiling, consisting of wire netting (’Drahtnetz’) and a layer of
paper (’Papier’) or suitable fabric, with a concrete screed (’Estrich’) (Lilienthal 1898).

�is shape causes a relatively uniform stress in the wire mesh when the �oor is loaded,
and Lilienthal therefore claimed a signi�cant increase in strength of the �oor. He
also presented a variation where the paper is on top of the netting, “thus forming a
surface similar to that of a sofa-cushion” (Lilienthal 1899).

�e ceiling was later marketed under the name Terrast Decke. �e system was used
in Berlin, in several houses as well as in the Königin-Elisabeth-Hospital, in 1909,
where it was applied to most of the 2’000 m2 of ceilings. In order to repurpose the
long abandoned hospital, a structural survey determined the �oor’s capacity to be an
impressive 10 kN/m2 still (Vogdt & Djahani 2000). Nonetheless, in 2013, the building
was entirely demolished.

Similar incarnations of this system were patented throughout the twentieth century
(Figure 3.3) (Veenendaal 2016), but no further large-scale applications of these singly
curved �oor systems are known to exist.

�e engineer JamesHardress deWarenneWaller (1884–1968) had one of these patents.
He was perhaps the most proli�c inventor of fabric formworks, having patented
various ideas for fabric formwork construction. One such idea was stretching hessian
over timber frames to form wall panels; a system he called Nofrango. For a new type
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Figure 3.3: Inventions of the fabric-formed �oor by Fletcher (1917), Govan & Ashenhurst
(1928), Waller (1934), Farrar et al. (1937), Parker (1971) and Redjvani (1999).

of concrete hut, the Patrick portable hut, this hessian continued onto the roof. �e
fabric hung under the weight of the applied concrete, no more than 1 in, forming a 2
� wide precast unit. At the corners, this created a strong double curvature. �ese
units were then bolted together to form the hut (Anon. 1941).

3.2.2 Corrugated vaults

James Waller was also the �rst to apply fabrics to the construction of thin-shell
structures. He was inspired during his visit to the vaulted Palace of Taq-i-Kisra at
the ancient city of Ctesiphon, while stationed in Iraq (Figure 2.16). He developed
the “Ctesiphon system”, which started from reusable, lightweight falsework arches,
made of steel or timber, catenary in pro�le, and placed in parallel. �e fabric could
be jute, coir, sisal or burlap, but typically hessian. �e slightly prestressed fabric was
tacked to the arches and, under the weight of the applied cement mortar, sagged in
between the falsework arches to form corrugations, acting as a lost formwork (Figure
3.4). �e thickness of the �rst thin coat of cement, the prestress in the fabric and
the spacing between the arches would determine the depth of the corrugations, and
thus the sti�ness of the shell. Typically, two more layers of cement were then applied.
�e arched ribs had an inverted catenary shape, so that the resulting form was in
compression and required a minimum amount of reinforcement to mainly deal with
thermal expansion and contraction.

About ��y military huts were built using this system during the 1942–1943 period of
feverish construction of the American camps in preparation for D-Day (Mallory &
Ottar 1973), as well as the ends of blister hangars, a type of arched, portable aircra�
hangar. Waller patented a speci�c system in 1955 for spans of up to 150 m using
prefabricated trussed arches from which to suspend the fabric. Co-developer Kurt
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Figure 3.4: Sections of the Ctesiphon system with girder arches and fabric (Waller 1952b), or,
for 100-500 � spans, with external lattice box girder arches and fabric or expanded metal
(Waller 1952a), up to 5 in concrete and two reinforcement meshes for a 310 � span (Waller &

Aston 1953).

Billig noted that there appeared to be “no reason why corrugated shell roofs should
not be built to span freely several hundred feet with a shell thickness not exceeding
4-5 inches” (Billig 1963) (Figure 3.4). �e system was also competitive as it reduced
the cost of moulds and sca�olding, and required no skilled labour (Billig 1946).

An unusual Ctesiphon structure was the Church of Christ �e King and St. Peter, in
Lawrence Weston, Gloucestershire, Bristol, England (Figure 3.5). �e building had a
40 � span, 2.5 in thick vault over the nave and another 30 � span annex. Unfortunately,
it has since been demolished.

Figure 3.5: Church of Christ �e King and St. Peter with 30 and 40 � span, 2.5 in thick
Ctesiphon vaults in Bristol, England, c. 1950 (demolished).
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Two of the last and largest structures were the Chivas DistilleryWarehouses in Paisley,
Scotland, still in use by Chivas today. �e two structures, 100 � and 150 � long, each
feature three 100 � spans (Figure 3.6). �e shell has a thickness of 2.5 in including
a 2 in structural layer of concrete, with a 7-day cube compressive strength of 3’850
psi, c. C20/25. Instead of hessian, expanded metal, weighing 5.5 lbs/sq yd yard, was
draped between the arches, spaced at 100 in distances. �e thin metal sheeting was
used as lost formwork and tensile reinforcement (Anon. 1959).

Figure 3.6: Chivas Distillery Warehouses with 100 � spans, 2.5 in thick Ctesiphon vaults in
Paisley, Scotland, c. 1959.

�e largest known complex built with fabric is a former jute factory in Umtali,
Southern Rhodesia (now Mutare, Zimbabwe). It consists of seven adjoining 44
� span barrel vaults and another separate one. Constructed with almost entirely
local labour, the 100’000 sq� jute mill and store was deemed to perform very well
in terms of insulation, ventilation, construction cost and maintenance (Figure 3.7)
(Vandenbergh & Partners 1952). �e structure still stands today in its entirety.
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Figure 3.7: Jute factory with 44 � span Ctesiphon vaults in Umtali, Southern Rhodesia (now
Mutare, Zimbabwe), 1948.

Even larger spans of 112-115 � Ctesiphon shells were built in Spain (Billig 1961), but it
is unknown whether they were built using fabric or expanded metal.

�e success of the system was partially attributed to the rising demand for unob-
structed covered spaces with increased clearances in addition to global shortages at
the time of the “modern wonder material, steel”, as well as timber (Waller & Aston
1953). �e Ctesiphon system by James Waller and Kurt Billig would also have sig-
ni�cant in�uence on two shell builders in particular: Félix Candela and Guruvayur
Ramaswamy.

�e �rst, renowned concrete shell builder Félix Candela Outeriño (1910–1997), was
greatly inspired by the Ctesiphon system in his early work. Candela graduated in
1935 from the Escuela Técnica Superior de Arquitectura de Madrid (ETSAM), Spain,
but was forced to move to Mexico a�er the Spanish Civil War. �ere, he spent the
greater part of the 1940s rigorously devoting himself to literature on shell design,
analysis and construction, coming across the work of Waller and Billig: “�is was
copying a system they were using in England at the time; I copied everything I could”
(Rabasco 2011). Candela’s �rst shell, an experimental vault with a 6 m span in San
Bartolo, Mexico City, used the Ctesiphon system. He used this approach again for a
rural school in Santa Librada near Ciudad Victoria, Tamaulipas in 1951 (Figure 3.8),
before moving on to other geometries, such as conoids and hyperbolic paraboloids,
which required other approaches to construction (Faber 1963). �e latter structure is
still standing.
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Figure 3.8: Experimental 6 m span vault, San Bartolo, Mexico City, 1949 and rural school,
Santa Librada, Mexico, 1951, both by Félix Candela.

�e second, Guruvayur Subramanian Ramaswamy (1923–2002), became head of the
Structures Division of the Central Building Research Institute (CBRI) in Roorkee,
India, in 1956, while Billig had been appointed director of the CBRI four years earlier.
Ramaswamy described, and was possibly involved with the Ctesiphon shells built
there at Billig’s initiative (Ramaswamy 1963). Ramaswamy’s work is discussed further
in the next section.

By the end of the 1970s, the Ctesiphon system had been employed in over �ve hun-
dred shells in one form or another around the globe. Before his death, Waller sold his
Ctesiphon patents to Seagrams, for whomhe had designed the Chivas DistilleryWare-
houses (Figure 3.6). Seagrams never used the patents a�er Waller’s death (Williams
1996). Other factors may have contributed to the disappearance of this building
system. Speci�c problems were the necessity of proper supervision (Waller 1953),
the likelihood of cracking at the top of the ribs (Anon. 1960) and instances of poor
thermal quality (Naidu 1963). Another reason may be the architectural novelty of
the catenary form wearing o�. For example, catenary shells (initially Ctesiphon
shells) were developed and adopted in Spain by several renowned Spanish architects
(Rabasco 2004, 2011). However, already by 1959, one of them, Rafael de La-Hoz
Arderius, while lauding Candela’s later achievements, referred to his �rst catenary
shaped vaults (Figure 3.8) as being cautious and conservative (Candela et al. 1959).
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3.2.3 Inverted vaults

By 1932, Waller had patented the idea of inverting a hanging fabric to obtain “ceilings,
domes or roofs having curved surfaces of catenary form” (Waller 1932), but it is
unknown if he was able to apply it.

While working at the CBRI, Ramaswamy developed and patented amethod of casting
unreinforced, small-sized modular shells in fabric and inverting them as a �ooring
system of doubly curved shells (Figure 3.9) (Ramaswamy 1986, Ramaswamy et al. 1958,
Ramaswamy & Chetty 1958). Each module was 4×4 �, and 1 in thick, so it could be
handled by four men. �e savings in cost, cement and steel compared to traditional
means were estimated to be around 25, 49 and 46 % respectively (Ramaswamy &
Chetty 1960, Williams et al. 1958).

Figure 3.9: Section of the funicular wa�e shell roof (Ramaswamy 1986).

Application of the �oor system started with a large scale housing project of nearly
45’000 m2 in Punjab (Figure 3.10) (Ramaswamy & Chetty 1960). �ese funicular
shell �oors would be adopted in the construction of thousands of buildings in India
and abroad according to Parameswaran (2002), possibly because the patent was
released free of charge.

Since the late 1970s, academic work has continued at Shiraz University, and later
Sharif University of Technology in Iran (Vafai et al. 2005, Vafai & Farshad 1979, Vafai
et al. 1997). Later work investigated the inclusion of wire-mesh reinforcement, and
the most recent that of 2 % steel-�bre reinforcement. So far, this particular work
has not seen any industrial application. Funicular shell roofs in general are still
advocated and built in India, but using other construction methods like earthen
moulds.

Ramaswamy’s inverted �oor system predatesHeinz Isler’s (1926–2009) famous confer-
ence lecture on new shell shapes, which included the notion of generating funicular
shapes through the use of inverted hanging models (Isler 1960). Isler had started his
experimentation on non-geometric shell shapes back in 1954, and would use this

114



Figure 3.10: Sequence of construction for Ramaswamy’s inverted �oor system, subjected to
16.6 kN/m2 for seven months without distress, Punjab, India (Ramaswamy & Chetty 1960).

particular approach to great e�ect for many of his shell designs (Isler 1980). �ese
were large-span roofs, which renders the inversion of a hanging shell impractical. As
such, they were generally built using laminated timber for rigid formworks, although
pneumatic formworks were also used in several of Isler’s projects (Section 3.4.1).

�e use of an inverted shell resurfaced in 2004. Inspired by Isler, and essentially
scaling up his ideas, Mark West developed a prototype at CAST (Figure 3.11). In
this case, a rigid formwork was made by spraying glass-�bre reinforced concrete
(GFRC) against a �at sheet of geotextile hung from a steel frame. �en, a�er being
inverted, the formwork served to produce a single 2.5 m GFRC barrel vault; a unique
example of a singly curved, inverted vault (West et al. 2011). Similar to Ramaswamy’s
�oor system, CAST also developed two rectangular panels, with the second version
cast at a Lafarge precast factory (Figure 3.11). �is, in turn, led to three more highly
prestressed versions, with one using a mould itself made as an inverted vault (Section
3.3.3).

115



Figure 3.11: Barrel vault and doubly curved vault, both produced at the Lafarge Building
Materials precast factory, Winnipeg, Canada, 2004 and 2007.

At the University of Edinburgh, three fabric-formed prototype shells were built
(Pedreschi 2013). �e �rst was de�ned by two plywood catenary curves of equal span
but di�ering rises, and is similar to the Ctesiphon system (Section 3.2.2). �e second
prototype is discussed in Section 3.3.1. �e third, a dome, is the only one classi�ed as
an inverted shell. It was assembled from individually fabric-formed segments, each
cast in hanging form, then placed upright.

Two pavilions were developed by Supermanoeuvre architects (Maxwell & Pigram
2014). One was built together with students of the Institut d’Arquitectura Avancada
de Catalunya (IAAC), Barcelona, Spain, and the other with students of the University
of Technology Sydney (UTS), Australia, at their respective institutes (Figure 3.12).
�ese 4.85 m and 6 m span shells, designed using dynamic relaxation, consisted

116



of 83 and 193 individually fabric-formed segments respectively. Each segment was
cast using a hanging formwork, reminiscent of Ramaswamy’s system, by applying
about 8 mm of gypsum-based plaster to a cotton lycra. �e segments were placed on
cardboard sca�olding and joined with additional plaster.

Figure 3.12: Gaudi’s Pu�y Jackets pavilions, produced at IAAC, Barcelona, Spain and UTS,
Sydney, Australia, 2013.

A range of prototype shells were produced using impregnated carbon �bre textile
instead of concrete, starting from work at the Architectural Association School
of Architecture, London, UK, in 2008, and continued later at the Technion Israel
Institute of Technology, Haifa (Blonder 2015, Blonder & Grobman 2015a,b). �e
method, called FABRICation, consists of hanging and manipulating the textile, then
impregnating it with resin, before it is cured in an oven and �nally inverted. �e
largest �bre-reinforced polymer (FRP) prototype thus far had an 8 m span, 2 m width
and 1 m rise (Figure 3.13).

Figure 3.13: FABRICation prototypes, membrane curing in oven, and inverted 8 m span shell,
both at the Gurit factory, Isle of Wight, UK, 2008.
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3.3 Prestressed fabric formworks

�e previous examples did not rely on any, or only on a very minor amount of
prestress. By increasing the initial pretension, combined with proper boundary
conditions, it is possible to avoid sagging of the fabric resulting in negatively curved
shapes. �ese geometries are generally modelled a�er and approximate traditional
shell shapes such as hyperbolic paraboloids or catenoids. Of course, by using a
�exible fabric, a much wider range of shapes is in fact possible, and some further
examples indeed defy any straightforward mathematical de�nition.

3.3.1 Hyperbolic paraboloids

By the 1970s, shell building had fallen out of favor. “�e expense of the formwork
necessary for construction caused [the] demise [of concrete shells]. Now, hypar
structures can be constructed easily and simply without forms.” Joseph Kersavage
(1936–2005) of the University of Tennessee spoke of the system he patented to cast
the surface of a hyperbolic paraboloid (or hypar) using prestressed fabric (Figure
3.14). In previous decades, Candela had famously used timber planks as shuttering,
following the hypar’s straight generator lines. Kersavage’s idea was to follow those
same lines using strips of �breglass or metal insect screening, and later fabric. �ese
were then bonded by applying a semi-rigid material such as acrylic plastic (Kersavage
1975), or by brushing or spraying a mix of latex, cement and sand, or Latex Modi�ed
Concrete (LMC), to a thickness of only 1 cm (Knott & Nez 2005, Stepler 1980).
Like the Ctesiphon system, it required low- to unskilled labour with little or no
supervision. Kersavage’s main interest was the hypar itself and not its formwork
system in particular, so later work focused more on arrangements of multiple hypars,
their use as solar collectors and military applications.

Others continued to develop the formwork system further, in particular George Nez,
an engineer for the US Park Service, with further engineering expertise by Albert
Knott (Knott & Nez 2005). Starting with a workshop roof at the Rocky Mountain
Park in 1977, their involvement led to a string of about twenty projects in developed
and developing countries, most of which feature arrangements of several hypar shells,
each referred to as a Latex Concrete Habitat (LCH). Each unit is typically 10 � square
in plan. Four units are assembled to form a 20 � square gabled roof. �e LMC is not
reinforced other than the �breglass screening itself. Coincidentally, Knott & Nez
(2005) also proposed a system similar to Ctesiphon.
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Figure 3.14: Patented formwork system for hypars by Kersavage (1975)

�eir work also inspired others to found a company, TSC Global, in 2010, with the
most recent projects involving hypars, marketed as�in Shell Composite Hyperbolic
Paraboloids (TSC HyPars), being completed in 2011 in Bangladesh and Haiti (Figure
3.15). �e latter project, built with a local construction partner, has since been
criticized for �ooding when it rains, despite patches, tarps and other �xes (Katz
2015).

Although TSC Global still operates, it no longer actively promotes TSC HyPars,
favouring other formwork techniques for traditional construction instead. Still,
these roofs have attracted some recent academic interest, investigating the seismic
behaviour of these structures (Balding 2013), and the properties of polymer modi�ed
concrete (PMC) (Carlton 2013). Concrete strengths range betweenC20/25 andC30/37,
depending on the water-cement ratio and use of sand aggregate.

In 2006, several experiments at Eindhoven University of Technology demonstrated
a construction method using fabric and shotcrete (Figure 3.16), as a means to recon-
struct the Philips Pavilion, designed for the 1958World Expo in Brussels by the o�ce
of Le Corbusier (Figure 2.8). �is method was suggested as an alternative to the
earthen formworks used to cast the nine hypars that made up the original structure.
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Figure 3.15:Model HyPar roofs for Building Back Better Communities (BBBC), in Zoranje,
Haiti, 2011.

A 7 m high, 2.5 m wide prototype with a thickness of 7 cm was constructed (Figure
3.16). �e project concluded that the construction method would be feasible in
a developed country, but that the surface could have deviations as a result of the
application of shotcrete, up to several centimetres (Pronk et al. 2007b). A follow-up
feasibility report shows an additional experiment replacing the fabric by a sti�er
metal mesh to resolve the issue of form control, and mentions the use of a cable net
with rebar for the actual proposed construction method (Pronk & Dominicus 2012).

A 4.5 m high, 6.2 m wide prototype with a thickness of 3 to 7 cm was similarly
constructed at the Institute for Membrane and Shell Technologies, Building and Real
Estate (IMS), Anhalt University of Applied Sciences, Dessau, Germany (Duerr &
O� 2014). �is followed an earlier 3 × 3 m prototype which su�ered from ponding
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Figure 3.16: Early and �nal prototype for reconstruction of the Philips Pavilion, Eindhoven,
Netherlands, 2007.

due to insu�cient prestress and uneven spraying thickness (Figure 3.17). �e larger
version was executed in three layers of steel �bre-reinforced shotcrete with open
mesh fabric. At each step, the geometry was 3D scanned while perimeter cable forces
were monitored and adjusted.

Another independent physical experiment was carried out at the University of Ed-
inburgh, as part of a student project, to investigate constructional aspects of the
fabric forming of a hypar shell. In this case, two layers of woven fabric were stretched
between timber edge beams (Figure 3.18) (Pedreschi 2013). �e lower structural
fabric, a greenhouse netting, acted as shuttering, while the upper elastic cotton fabric
produced a smooth �nish of the concrete.

A considerably larger 7.5 m span, 120-150 mm thick hypar was built by In�nity &
Beyond Building Solutions (Figure 3.19) (Mathur 2015). �e shell was hand rendered
using M25 (C20/25) concrete, applied in two layers. �e technique uses 50-100 mm
strips of fabric, produced from waste from the textile industry. Contrary to the roofs
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Figure 3.17: Early and �nal prototype of the membrane shell, Dessau, Germany, 2014.

Figure 3.18: Hypar shell, University of Edinburgh, 2012.

by TSC Global, the strips roughly follow principal curvatures, rather than straight
lines. �e �nal form is then “reinforced with binding wire from underneath, tied into
the edge piping, that helps [to hold] the weight of the concrete”. Figure 3.19 shows
the pipe frame runs along the edges, and along three internal lines, subdividing
the surface into six fabric-formed segments. Mathur (2015) claims a 38-42 % cost
reduction for a 50 m2 shell compared to a conventional timber formwork. Tolerances
were measured at the tips and centre (coinciding with the pipe frame) and were less
than 10 mm.
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Figure 3.19: RSPL Poolside Canopy shell by In�nity & Beyond Building Solutions in
Bangalore, India, 2015.

3.3.2 Catenoids

In Brussels, a series of thirteen prototypes were constructed from a prestressed fabric
using shotcrete (Cauberg 2009, Cauberg et al. 2012). �e �nal shells had a thickness
of 5 cm and a 2 m span (Figure 3.20). Both traditional steel reinforcement and glass-
�bre mat reinforcement were compared. �e form-found shape, using the force
density method, did not exactly have uniform prestress. �is means the resulting
shape is approximately, but not exactly a catenoid, although it is referred to as a
minimal surface.

A�er applying the shotcrete, the deformed shape of eight out of thirteen shells
was measured and compared to a numerical model. Deviations from an expected
de�ection of 15 mm ranged between 5 and 58 %, to more than 100 % for non-coated
fabrics. �ese errors were attributed to several causes: tolerance of the applied
concrete thickness; incorrect sti�ness of the membrane edges; erroneous swapping
of warp and we� direction; slip at the �xation points; and, the dynamic e�ects of the
shotcreting (Cauberg 2009).

3.3.3 Non-analytical shapes

Continuing from earlier prototypes (Section 3.2.3), three more doubly curved shells
were produced at CAST. Figure 3.21 shows a 5.3 m span, 3 cm thick shell, reinforced
with a carbon grid (West & Araya 2009).
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Figure 3.20: Catenoid-like prototypes by the Belgian Building Research Institute, Centexbel
and the Vrije Universiteit Brussels, 2007-8.

Figure 3.21: Negatively curved vault, produced at CAST, 2009.

Another, a 3 cm lenticular shell, was cast from two �at sheets of fabric. �ese sheets
were �xed to an outer frame along three of their edges, with the remaining adjoining
edges sandwiched along the centre of the formwork by two layers of plywood. �is
‘keel’, along with the rest of the frame, controls the longitudinal shape and curvature
(Figure 3.22). As before, a carbon grid was used as reinforcement. Details on this
prototype have not been published.

A �nal 6 m prototype was a ‘�ayed beam’, integrating a central tension tie to resist
horizontal thrust from the overall shell. �e formwork used a custom fabric, Fabrene
W756, designed at CAST together with PGI-Fabrene. �is is a standard high strength,
woven, coated PE fabric, but with a welded, fuzzy non-woven backing. By casting
GFRC against the fuzzy side facing upward, then inverting, a fabric-formed rigid
mould, with a smooth, coated surface was made. �e design was highly corrugated,
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Figure 3.22: Lenticular shell prototype, produced at CAST, 2009.

or ‘buckled’, by selectively prestressing the fabric at both ends. As each previous
prototype made at CAST, the formwork used only �at sheets, meaning the reinforce-
ment could be made from �at meshes as well, requiring no complicated cutting
patterns. �e fabric was su�ciently elastic to allow for double curvature. Instead of a
carbon grid, alkaline-resistant (AR) glass�bre scrim was used in the shell, with steel
reinforcing along the centre and edges (Figure 3.23) (West et al. 2011).

Figure 3.23: Flayed shell prototype, produced at CAST, 2009.
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A 48 m2 pavilion was built at the entrance of the BMS College of Engineering in
Bangalore, India, 2011, as part of the AA Visiting School (Figure 3.24). Utsav Mathur,
mentioned in Section 3.3.1, was one of the participating students. �e anticlastic
shell was designed using particle-spring form �nding (Bhooshan & El Sayed 2012,
Bhooshan et al. 2014). �e fabric actedmore as a guidework than a formwork, serving
to describe the complex geometry of the steel reinforcement bars and mesh, which
in turn carried the weight of the applied concrete.

Figure 3.24: Hyperthreads shell with fabric guidework, 6 m span, 8 cm thick shell, Bangalore,
India, 2011.

Belton (2012a,b) constructed a 1.22 m square fabric-formed minimal surface (Figure
3.25). �e shape was inspired by the work of Frei Otto, but novel as it was a non-
orientable surface. Spandex with PVC along the edges, was stretched into a metal
frame, before spraying up to 20 mm of plaster. His work includes designs and
proposed sequencing for a larger structure enclosing a chapel.

Figure 3.25: Bow-tie column, Florida, US, c. 2012.
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3.3.4 Double-layered formworks

In the examples thus far, the formworks have been open, with concrete applied to the
exterior of one side. By using two layers of fabric or membrane, tying them together
at regular intervals, it is possible to inject the formwork by pumping concrete and
create a mattress. �is concept has been widely applied to fabric formworks from
the late 1960s onward, to create mattresses as river or coastal revetments. By placing
the formwork vertically, it is possible to cast concrete walls instead, as has been done
since the 1990s in several cases (Veenendaal 2016).

By making the boundaries of such a formwork non-planar, opportunities arise to
create doubly curved surface structures. A student project fromEindhovenUniversity
of Technology used a double layered formwork, combined with cables to create a
surface structure in this manner (Section 3.7.2, Figure 3.46).

�e ties can also be replaced by larger plywood clamps, to create open cellular
wall structures, which has attracted some academic interest (Dominicus et al. 2011,
Pedreschi 2013, Pronk et al. 2011). A parallel student project from Eindhoven (Diele-
mans et al. 2016), and an earlier student project from the University of Michigan
(Holzwart et al. 2010), used this technique to create doubly curved, cellular structures
(Figure 3.26) .

3.4 Pneumatic formworks

In the previous sections, the stress in the formwork was generated through weight
or pressure exerted by the concrete, combined with varying levels of prestress. Air
pressure can be used to in�ate the formwork, creating positive curvature and carry
part of the weight of the concrete.

Using air-in�ated formwork for hollowcore, concrete constructions is patented as
far back as 1907, by James M. Boyle. In the 1940s, such formworks were applied to
the construction of concrete domes. From the 1970s onward, the rise of tensioned
membrane structures, and subsequently that of air-in�ated membrane roofs, led
to greater opportunities for �exibly formed shells, at a time that the future of thin
concrete shells was put into question (Sobek 1987). More recently, vacuum has been
proposed for pneumatic formworks as well.
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Figure 3.26: Student prototypes: (above) FattyShell, University of Michigan, US, 2010,
(below) Organica Hyparbolica, Eindhoven University of Technology at Geelen Beton precast

factory, Netherlands, 2016.

3.4.1 Air-inflated formworks

By 1940, Karl Pauli Billner (1882–1965), engineer and proli�c inventor, had developed
a construction system of in�ated, rubberized fabric, constrained by �exible bands,
and likewise pressurized from the inside by either air or water (Billner 1943). Billner
had already patented a system of vacuum concrete construction to reduce the curing
time of concrete (Billner 1936), and combined both ideas for a demonstration in
1940; a pillbox fort made on an air-in�ated form, cured using the vacuummethod to
squeeze out excess water (Figure 3.27). �is required an external, rigid steel form as
well. �e pillbox was completely �nished within �ve hours.
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Figure 3.27: Concrete pillbox completed in �ve hours using vacuum concrete, Washington,
US, 1940.

He patented this particular system much later, declaring that “ever since the time,
many years ago, that the present inventor publicly demonstrated the use of in�atable
�exible internal forms for the production of concrete structures, there have been
many attempts by others to imitate and reproduce themethods and products” (Billner
1953). Indeed, since then, a long string of concepts for pneumatically formed shells
were patented (Figure 3.28), as well as for other applications. One interesting patent
by Bird et al. (1964), for example, describes a system of parallel, in�ated, semi-circular
tubes to cast a corrugated shell, reminiscent of Ctesiphon. �e University of Maine
developed a similar system in which the carbon and glass FRP tubes, or sleeves, are
in�ated, cured with resin, and then �lled with concrete to form arches for a bridge
structure (Dagher et al. 2012).

Wallace Ne� (1895–1982) is widely credited as the �rst inventor, having patented the
concept of an in�atable dome as a formwork for concrete bubble houses in 1942,
using neoprene-impregnated nylon fabrics (Ne� 1942). Ne� himself acknowledged
Billner as being the �rst, though criticized speci�c aspects of his system (Kanner &
Ne� 2005). His Airform system used only an internal form, with concrete applied
from the top down using a cement gun. �e concrete is mixed at the nozzle, i.e.
guniting (Figure 3.29). �is presented a low-cost way of quickly erecting dome shells
by reducing the need for materials and labour. Ne� envisaged this as a solution to
the housing crisis in the 1940s, but also emphasized its aesthetic appeal, saying that
“beautiful �owing lines and curves come into being without e�ort [. . . ] �e absolute
absence of girders, columns and jigsaw trusses startles the imagination”. In October
of 1941, construction began on twelve bubble houses in Falls Church, Virginia, US. In
the following two decades, around 2’500 Airform shells were constructed worldwide,
although few remain.
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Figure 3.28: Inventions of the air-in�ated formwork for concrete domes (from le� to right,
top to bottom) by Ne� (1942), Baily (1942), Billner (1953), Bird et al. (1959), Turner (1966),
Bini (1969), Harrington (1971), Heifetz (1972), Prouvost (1978), South & South (1979) and Hale

(1988).

Figure 3.29: Airform construction, 1941, and completed Goodyear Balloon House, Litch�eld
Park, Arizona, US, 1945.

During the late 1960s until the 1980s, academic interest in in�atable structures
and formworks grew, as evidenced by the 1967 IASS colloquium and the 1972 IASS
conference dedicated to pneumatic structures, and the 1986 special issue of Concrete
International devoted to pneumatically formed domes.
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�is interest paralleled the commercial success enjoyed by those that followed in
Ne� ’s footsteps. Father and son Haim and Raphael Heifetz successfully built many
shells in Israel during the 1960s using PVC-coated fabrics (Heifetz 1972). �eir
system is still represented by Raphael Heifetz’ company YSM-for-Building, which
asserts that more than 40’000 Domecrete structures have been built since. Heifetz
(2016) claims that Domecrete may save 50-60 % in cost for the full envelope, resulting
in 20-25 % savings for the �nished building, compared to traditional construction.
Around the same time, over 1’600 shells were constructed by Dante Bini and at least
a hundred by Horrall Harrington in the US, both of which o�ered geometric and/or
constructional variations on the principle of pneumatically formed shells (Bini 1969,
Harrington 1971, Sobek 1987). Bini’s approach deviates considerably, as the formwork
is in�ated a�er the concrete is applied. Like Heifetz, Bini’s work is being continued
by his son Nicoló Bini at Binishells. Horrall Harrington’s Air Shells and HP Domes,
however, no longer operate. �is is possibly related to the former never becoming
pro�table, a copyright infringement lawsuit between both companies in 1988, which
was dismissed, and the a�ermath of the collapse of one of HP Domes’ storage domes
in 1992, which was attributed to design �aws.

Many other people and companies employed these systems, notably the shell builder
Heinz Isler, who studied Heifetz’ work.

Isler had used in�atables for form-�nding models (Section 2.2.5). He co-founded
the company Bubble System AG in 1976, along with François Prouvost (see Figure
3.28) and others. �ey developed pneumatic formworks for 7-8 m domes; the �rst
buildings were made in Langenthal and Aarwangen, Switzerland, then twelve in
Ponthierry, France (Sobek 1987). Due to the rising oil prices of the 1970s energy crisis,
a construction boom occurred in Saudi Arabia (see also Section 2.3.2). During this
period Bubble System built as many as forty-three shells in Riyadh in 1977 (Figure
3.30) and another eighty in Al Baha in 1984.

Pneumatic formworks continue to provide a market for specialist companies like
YSM-for-Building and Binishells. Four more companies, Domtec (80 domes built),
Dome Technology (600 domes built), PIRS (150 domes built) and Monolithic Con-
structors (4’000 domes built) all construct shells by spraying foam and concrete on
the inside of the formwork following Harrington’s system, leaving the formwork as
waterproo�ng. Yet another approach was recently developed at TU Vienna, called
the pneumatic wedge method, in which segments of hardened concrete are li�ed
by an in�atable before being connected (Kromoser & Kollegger 2015a,b). All in all,
Hennik &Houtman (2008) claim over 70’000 shells have been built using pneumatic
formwork around the world. �e largest is the 330 � diameter Climax Molybdenum
Mine by Dome Technology (Figure 3.31).
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Figure 3.30:Market with forty-three shell roofs, 6×6 m in plan, by Bubble System, Riyadh,
Saudi Arabia, 1977.

Figure 3.31: Climax MolybdenumMine with 330 � diameter formwork, shown prior to PU
foam spraying, built in four months, Leadville, Colorado, US, 2011.

�e examples thus far concentrated on spherical domes. Other geometries are
possible, but certainly not as common. Heifetz (2016) has built cylindrical, ellipsoidal
and toroidal shapes, for instance. Otto et al. (1973) show an unusual and large
experimental structure in Essen, Germany, built in 1962, where an in�atable was
coated with sprayed GFRP. �ey also show a large pneumatically formed model
with multiple internal supports, hardened by applying a GFRP resin (Figure 2.39).
Schlaich & Sobek (1986) and Hennik & Houtman (2008) discuss what the greater
potential is of pneumatic formworks for more irregularly shaped shells.

�e British company Concrete Canvas manufactures an impregnated fabric, that
can be in�ated before applying water to quickly construct concrete shelters. �ese
shelters have a somewhat arbitrary, barrel vaulted shape.
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Another unusual system was recently built by BB-Con (Figure 3.32), following a
prototype with Eindhoven University of Technology in the Netherlands. It combines
a catenary form with the use of in�atables as a formwork. �e 260 mm thick shell
was constructed in three layers of either polymer or steel �bre reinforced shotcrete.
�e project was completed a�er BB-Con went bankrupt, but the company has since
restarted under the name BetonBallon Technology, promoting the same system.

Figure 3.32:Mettler Autodemontage o�ce building, 11×11 m in plan, with 260 mm thick
shell, Schijndel, Netherlands, 2012.

A long string of experimental work has been undertaken by Arno Pronk et al. at
the Eindhoven University of Technology. Pronk had supported BB-Con’s prototype
and developed the shotcreted hypars shown in Figure 3.16 (Pronk et al. 2007b). He
supervised two parallel student projects, using double-layered fabric formworks to
cast shells (Figure 3.26 and 3.46).

Other prototypes explored the combination of in�atables within prestressed wire
mesh or PVC-coated polyester to produce unusually shaped concrete or GFRP
pavilions (Figure 3.33) (Pronk et al. 2007a, 2003) and wrapping an in�atable with
rubber cooling tubes to create an ice pavilion (Pronk & Osinga 2005). Citing Isler’s
experiments in creating hanging ice shells (Chilton 2000), recent work using air-
in�ated formworks has resulted in the largest ever ice dome with a 30 m span (Pronk
et al. 2014a) and the highest ever ice dome with a height of 30 m, inspired by the
Sagrada Família (Belis et al. 2015, Pronk et al. 2015). Both projects combined an
in�ated formwork with ropes and cables, and used ice reinforced with wood �bres
(also known as pykrete) (Pronk et al. 2014b).
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Figure 3.33: Blob mesh prototype with 5 cm sprayed concrete on formwork using in�atables
and nets, Netherlands, 2007.

3.4.2 Double-layered, air-inflated formworks

Zimmermann (2007) proposed the combination of in�atables with a double-layered
formwork (see also Section 3.3.4), allowing for an unconventional, synclastic, open
cellular shell. Depending on the openings, such a shell could be considered as a
gridshell. Tomlow et al. (1989a) already show a scale model of the same concept,
produced at ILEK in Stuttgart, Germany.

Such a structure, the STGILAT pavilion, was actually recently completed. �e student
project was a collaboration between architectural �rmCloud 9 fromBarcelona, Spain,
and the ArtCenter’s Environmental Design Department in Pasadena, California, US
(Figure 3.34). �e structure was built by pumping concrete into a fabric formwork
with rounded plywood plugs, supported on an air-in�ated ellipsoidal balloon. All
elements were pre-fabricated in the US, before being shipped and installed onsite in
Begur, Spain.

Figure 3.34: STGILAT Pavilion during construction, Begur, Spain, 2015.
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3.4.3 Vacuumatic formworks

Another related development is the use of pressure below atmospheric pressure, or
vacuum, to create de�ated structures. �e earliest occurrence is at the Queen’s Uni-
versity Belfast in 1970, where several students explored vacuumatic structures. Other
researchers experienced in pneumatic formworks such as Schlaich & Sobek (1986)
have suggested it as a formwork for concrete, and recently Huijben (2014) revisited
the idea, making various small-scale prototypes. Possible formworks systems are a
vacuumatic exterior mould, to cast concrete on top, or a direct vacuum injection
mould (Figure 3.35).

Figure 3.35: Experiments at Eindhoven University of Technology, Netherlands, on
vacuumatics as formwork, 2012, or infused with concrete, 2015.
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3.5 Bending-active formworks

�e use of bending for a formwork system can be traced back to Roman times. Archi-
tect and engineer Vitruvius proposed bending tied reeds and applying sand mortar
for the construction of vaults (Vitruvius 1914). Vaults around the Mediterranean can
be found showing impressions of the reed (Veenendaal et al. 2011).

Today, rebar is o�en bent to form a skeletal structure as lost formwork, for example for
complex concrete surface structures, artworks and boats. In general, we may assume
that the steel is plastically deformed, meaning that any bending is permanent, or
“passive” or that individual straight segments are combined to form a rigid gridshell.
Examples are the Taichung Metropolitan Opera House (Section 2.2.4) and the Zeiss-
Diwidag construction method (Section 2.1.1) respectively.

Instead, bending-active structures derive their geometry from elastic deformation.
�ese initially straight or planar, elastically bent elements, also called spline ele-
ments, interact with each other, or with other connecting elements, preventing them
from taking their original shape. �is creates a stable, prestressed structural system
(Lienhard et al. 2013, Van Mele et al. 2013). Such systems can be used as a reusable
formwork, and a few examples exist.

�e earliest known example is the Li�-Shape process for the construction of shells
(Evans & Marsh III 1962, Marsh III 1962, 1964). In this system, a pattern of reinforce-
ment bars, covered with a galvanized diamond mesh lath, is li�ed. �e supports are
then pulled to their �nal position by using chain ratchets, before spraying concrete.
�e concrete’s 28-day compressive strength was 2’400 psi, c. C17/20.

Several paraboloid shaped structures were built based on designs that were re�ned
using physical models. �e largest were 50 � span shells, supported on six points
(Figure 3.36): one on the campus of the Texas A&M (today inHensel Park); theMedo
Camera Shop for the 1964-1965 New YorkWorld’s Fair, in front of the Eastman Kodak
Pavilion (Figure 2.52); and, two for the Little Rock Zoo in Arkansas. Compared with
an estimate for a traditional timber formwork, the Li�-Shape method allowed for a
23 % theoretical cost saving.
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Figure 3.36: Erected steel armature as formwork, or Li�-Shape, for 21 � square polyurethane
shell, Texas A &M, College Station, US, 1961; the Medo Camera Shop, World’s Fair, New York,

US, 1964-1965; and Little Rock Zoo, Arkansas, US, 1964.

Around the same time, artist and inventor James Buchanan “Buck” Winn Jr. (1905–
1979) constructed a small hangar at his own ranch in Wimberley, Texas. �is shell
structure, inspired by primitive use of reed and mud, also used an armature of
steel rods, successively coated until a desired thickness was reached (Figure 3.37)
(Winn 1962). Although Winn also taught in Texas, at the University of Texas School
of Architecture, both he and Marsh presented independently at a 1961 conference,
suggesting their work was not related.

Figure 3.37: Steel armature as formwork for hangar, Wimberley, Texas, US, c. 1961.

A few years later, in 1964, Oberdick (1965a,b) constructed a 16 � and a 27 � square
wooden lattice grid with stapled-on nylon-reinforced paper skin, as a formwork for
a 4 in thick, sprayed polyurethane foam shell, at the University of Michigan (Figure
3.38).
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Figure 3.38: Erected wood armature as formwork for 21 � square polyurethane shell,
University of Michigan, 1964.

�e idea of using a gridshell as formwork reappeared when it was proposed by
Tang (2012, 2015), who built two small prototypes of di�erent spans, using the same
formwork (Figure 3.39). �e system used elliptical PVC electrical pipes for the grid,
and PP fabric as shuttering.

Figure 3.39: Deployable gridshell formwork and two resulting size vaults, University of
Edinburgh, 2014.

Researchers from the École Nationale des Ponts et Chaussées (ENPC) built a 10
m2 prototype for a “hybrid structural skin” (Figure 3.40) (Cuvilliers et al. 2017).
A gridshell was covered with concrete, referring to the gridshell as formwork and
the concrete as roo�ng. �is leaves the level of composite behaviour between both
systems ambiguous.
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Figure 3.40: Deployable gridshell as lost formwork for a hybrid system, ENPC, 2016.

3.6 Mesh formworks

�e use of wire mesh as shuttering is relatively common, for example, in ferrocement
construction, where it acts as reinforcement in the �nal structure. In such cases,
the mesh is supported by a skeletal frame of rods like rebar, by timber formwork,
or through some other means. A more unconventional approach is to suspend or
prestress the mesh. Many of the patents in the previous sections suggest both fabrics
and meshes as possible alternatives for their speci�c concept of a �exible formwork,
but actual use of meshes is rare.

However, examples do exist, and some have already been mentioned: the Chivas
Distillery Warehouses, built around 1958, replaced the earlier hessian fabric with
expanded metal (Figure 3.6); and Pronk et al. (2007a) combined in�atables with
steel nets (Figure 3.33) as well as proposed and built a prestressed mesh formwork,
replacing a previous version featuring a coated fabric (Pronk & Dominicus 2012)
(Figures 3.16).

�e idea of spraying concrete onto a tensile network to create a rigid shell, or “mem-
branal structure”, existed as early as 1953, as part of a series of studies in Raleigh,
North Carolina, US (Caminos 2012, 1959). �ey considered the problem of �nding
the correct shape when stretched, and proposed three measures for construction:
cutting patterns of the membrane, made from �at pieces; segmenting the surface,
assembled from smaller moulded pieces; and replacing the membrane by a network
of cables, rods or wires. �e option of using a fabric was never mentioned, though
many small models were made with fabric. �ey proceeded with a 50 in diameter
model with wire elements connected with washers at the nodes, another model
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with metal lath, then �nally a 120 in diameter model using metal lath and sprayed
concrete (Figure 3.41). �e outer ring and the internal supports were maintained
in the �nal structure, requiring no further formwork. Interestingly, shell builders
Eduardo Torroja and Pier Luigi Nervi acted as consultants for the project.

Figure 3.41:Model with 120 in diameter, prior and during concrete spraying with gunite,
State College Raleigh, North Carolina, US, c. 1953.

In 1972, Aleksandra Kasuba described a method of sandwiching a membrane guide-
work between honeycomb elements, then applying plaster on the interior, and con-
crete and cladding on the exterior (Kasuba 2011). A self-described environmental
artist, Kasuba has a long history of creating fabric structures and art installations.
She had intended to use this new construction method to the Millay Colony project,
in Steepletop, New York, US, but the project was in the hands of others by 1978.

She revisited and further developed the method around 2000, calling it the “K-
method”. A group of prototype shell dwellings were built in New Mexico, Manzano
Mountains, 2002-3, using chicken wire mesh between wooden frames, before ap-
plying PU foam, expanded metal lath, stucco render, and �nally aluminium roof
cladding (Figure 3.42). No other applications followed, but a large variety of design
studies were carried out. Among the chief advantages were bypassing the fabrication
of disposable and custom shaped metal or wooden formwork, and, interestingly
enough, avoiding “the use of computer design methods that replicate sculpted curva-
tures or simulate tensile surface con�gurations”.
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Figure 3.42: Shell dwellings, built using the K-method, New Mexico, US, 2003.

3.7 Cable-net and wire falseworks

An alternative tensile formwork system is to replace the fabric or mesh by discrete
elements. As mentioned, Caminos (1959) suggested a network of cables, rods or
wires, although for the �nal concrete prototype had used a metal lath. As with the
fabric formworks, the simplest imaginable use of cables for falsework would be to
suspend them. A few years earlier, in his thesis on hanging roofs, Otto (1954) in fact
suggested to cover and insulate such a roof with a thin 15–20 mm layer of concrete
(Figure 3.43). Here, the cable net is still the structural system.

�e 1950s actually saw the construction of many hanging roofs, some in the form of
suspended reinforced concrete shells. �is popularity led to a dedicated 1962 IASS
colloquium. Here, Liudkovsky (1962) commented that most suspended concrete
shells were erected using cast-in-place concrete (with formwork), and only a few
exceptions used precast elements, which avoided the need for sca�olding.

Possibly the �rst example of the latter is the 95 m span, 50 mm thick circular 1956
Cilindro Municipal in Montevideo, Uruguay. Engineer Leonel Viera (1913–1975) also
worked on a hyperbolic paraboloid version, the church of San Antonio María Claret,
which unfortunately collapsed during construction in 1967. Another example, also a
hyperbolic paraboloid, is the 1958 Philips Pavilion (Figure 2.8). �e largest hyperbolic
paraboloid shell is the 122 m span, 600 mm thick, 1983 Scotiabank Saddledome,
formerly the Olympic Saddledome. It was built from 6’400 precast panels suspended
from post-tensioned cables for the 1988 Winter Games in Calgary, Canada.
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Figure 3.43: Proposal for a cable-net roof with concrete cover (Otto 1954).

3.7.1 Hanging cables

�e only example found of a hanging roof with cast-in-place concrete without scaf-
folding is St. Stephen’s Lutheran Church in Northglenn, Colorado, US. Charles A.
Haertling designed this church that was built in 1963 (Figure 3.44). Steel cables were
hung from four 2 � wide by 2 to 8 � high, catenary shaped, prestressed concrete
beams. Two main beams were 83 � long, the other 50 �. Ribbed metal lathing was
placed on the cables, on which the 2.5 in thick concrete roof was placed (Anon. 1966).

Figure 3.44: St. Stephen’s Lutheran Church in Northglenn, Colorado, US, 1963.

3.7.2 Generator lines

When constructing a �exible cable-net or wire falsework for a hypar shell, the initial
reaction may be to follow generator lines. However, since a straight line cannot
support a load at any angle to its axis, tensions would theoretically need to be in�nite
in order to maintain the shape. Nonetheless, some smaller models have been built in
this manner. �e earliest, around 1960, is shown in Figure 3.49.
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Another shell was built in 1976-7 as part of a student project at the University of
Illinois at Chicago (Figure 3.45). Four connected hypars cover 40 m2 and rise up
to 7 m above ground. Steel strands, 1/8 in diameter, formed a 300×300 mm grid
within a tubular steel frame. �e grid seems to coincide with the generator lines of
the hypars, and in turn supported wire mesh. Concrete was applied using shotcrete
to an approximate thickness of 20 mm, though this was di�cult to control (Naaman
2000).

Figure 3.45: Hyperbolic paraboloid shell, University of Illinois at Chicago, US, 1977.

A recent project for a 2.4×2.4 m shell (Figure 3.46) included a double-layered fabric
(see also Section 3.3.4), but su�ered signi�cant de�ections, and subsequent failure
of seams, forcing casting to be seized (Claessens et al. 2016). �e de�ections of the
generator lines were likely exacerbated by the lack of appreciable prestress in the
cables and insu�cient sti�ness of the timber frame. �e project was carried out in
tandem with another, similar student project, shown in Figure 3.26.

3.7.3 Offset generator lines

A construction method, called the o�set wire method, was developed by Waling &
Greszczuk (1960) at Purdue University, Indiana, US, and avoided the need for “a
forest of falsework”. Initially, they observed that placing the wires along the straight-
line generators of the hypar would require “excessively high tension” (Ziegler 1961).
�us, they o�set the wires from the straight lines, slightly curving them as a result.
In addition, the method used two layers of wires to sandwich a layer of extruded
polystyrene (XPS) tiles as shuttering. �e cable net and XPS acted as lost formwork
for traditionally placed concrete.
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Figure 3.46: Concrete shell prototype, by Eindhoven University of Technology at Geelen
Beton precast factory, Netherlands, 2016.

Early prototypes are described by Waling & Greszczuk (1960). A�er building a 37 �
7/8 in square small-scale model with a rise of 9.22 in, they proceeded with a large-
scale 20 � square laboratory model with a rise of 7 � (Figure 3.47). �e prototype
had 3 in thick XPS designed for a 2 in thick concrete cover, deviating by 2.7 in from
a true hypar at its centre under equivalent loading. A coating of mortar reduced
de�ections to 0.4 in, but showed cracking above 80 % of the applied load. �e wires,
spaced 12 in apart, were prestressed between 0.9–2.7 kN using standard prestressing
equipment.

Figure 3.47: Large-scale laboratory model with steel frame, two layers of wires, XPS foam
boards and wedges, 20 � square, at the School of Civil Engineering at Purdue University,

Lafayette, Indiana, US, c. 1959.
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Two larger, identical 64 � square structures were built around 1960-1962: the Bay
Service Station, in Midland, Michigan, US (Maddex 2007), now the Auto Perfection
car repair shop; and, a clubhouse at the Purdue Golf Course in West Lafayette,
Indiana, US (Waling et al. 1964), demolished in the mid-1990s. Both were assemblies
of four hypars (Figures 3.48 and 9.4). �e Purdue shell had two layers of 0.135 in
wires, 6 � o�set from the straight-line generators. �e bottom wires were spaced 12
in apart, the top layer 24 in apart. �e bottom wires had an initial camber of about 4
in to account for the weight of the XPS boards.

�e hypars are 6.5 in thick, consisting of 3 in concrete, 0.5 in mortar, and 3 in XPS.
�e average cylinder compression strength of the concrete was measured to be 7415
psi a�er 28 days, or 51 MPa, close to a C45/55.

Figure 3.48: Construction of the Purdue Golf Course clubhouse, Indiana, US, 1960–1962.

3.7.4 Catenary lines

A London City Council school assembly hall consisting of �ve 73 � hypars, in South-
wark, Newington, London, now the Ark Global Academy, was built around 1960
(Flint & Low 1960). �e 1300 m2 complex is pentagonal in plan. �e hypars are 4 in
thick consisting of 1 in mortar, 1 in woodwool, 2 in sprayed concrete (gunite).

An earlier 1:8 prototype is described by Flint (1961) (Figure 3.49). PVC sheathed
generator wires of high tensile steel were anchored in the frame, with adjustable
screws for tensioning at one end. �ewires were covered with strips of light expanded
metal lathing, overlain by building paper. �e largest predicted movements were
about 10 in at full-scale during guniting, later con�rmed on the full-scale shells. A
�nal test loaded the prototype up to 170 psf.
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Figure 3.49: Prototype for Pentagon Hall at scale 1:8.

For the full-scale structure (Figures 3.50 and 9.5), a third set of catenary wires were
added to avoid substantial deformations. All steel wires were 0.276 in and the
generator wires were sheathed to allow post-tensioning. �e shuttering consisted of
the mesh reinforcement and wood-wool insulation. Remarkably, the sprayed mortar
was applied from underneath. �e cube compression strength of the mortar was
measured to be more than 9000 psi a�er 28 days, or 62 MPa, close to a C50/60. A
�nal comparison showed the cost of the shell to be potentially 20 % lower than a
similar project built using timber formwork. �e latter did not include insulation and
mullions, which were an inherent part of the wire formwork system. �e Pentagon
Hall also used a �nal coat of gunite as a cost-e�ective means of �nishing the interior
surface.

3.7.5 Lines of principal curvature

Both Waling et al. (1964) and Flint & Low (1960) realized that the generator lines
require too much tension to reduce deviations from the intended shape, and solved
this by o�setting them or adding a third direction respectively. Another approach
is to follow the highest, i.e. principal, curvatures. Since the applied load is equal to
tension times curvature: the higher the curvature, the lower the tension. By following
principal curvature, we obtain the lowest requirements for the amount of pretension
in a discrete formwork. Depending on the shape, these lines of curvatures may
converge or diverge, so a compromise has to be made if a minimum or maximum
spacing in the network is required.
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Figure 3.50: Pentagon Hall, Ark Globe Academy, formerly a London City Council school
assembly hall, UK, 1960.

Mollaert & Hebbelinck (2002) proposed a network of edge chains and adjustable
belts. �e network seems to be approximately oriented with principal curvatures.
A prototype formwork, based on this concept, was built at the Vrije Universiteit
Brussels, Belgium (Figure 3.51). It is brie�y described by De Bolster et al. (2009), but
details of this work by Hebbelinck remain unpublished. �e network of belts was
covered with expanded polystyrene (EPS) tiles before applying FRP on either side.
�e system is labour-intensive, but allowed for a range of shallow to highly curved
hypar shapes of varying spans.

As part of the present work, two 1.8 m square hypar cable-net and fabric-formed
prototypes were built in 2013-4 based on this approach, and reusing much of the
same formwork system (Veenendaal & Block 2014a) (Chapter 9). �e system was
proposed for an unbuilt 81.5 m span wildlife crossing (Torsing et al. 2012).
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Figure 3.51: Adaptable and reusable discrete falsework, Brussels, Belgium, c. 2009.

�ree cable-net and fabric-formed shell prototypes were built by Escobedo Construc-
tion. �e �nal two, designed and constructed with support from, and based on the
work by, Van Mele & Block (2011), followed principal curvatures. �e �nal, uniquely
shaped shell was hand rendered and reinforced with a carbon grid. �e curved edges
were o�set from the digitally fabricated, custom timber frame, and their thickness
controlled by pro�les clamped to the cable net. �e timber frame was supported and
braced by standard shoring and sca�olding elements (Figure 3.52).

Figure 3.52: Cable-net and fabric formed thin shell by Escobedo Construction and the Block
Research Group, ETH Zurich, Buda, Texas, US, 2014.
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3.8 Technical summary

�is is a summary of technical information found in the historical and contemporary
references on �exibly formed shells, discussed in the previous sections. �is includes
span, rise and thickness of built examples, overviews of concrete, reinforcement and
formwork materials, and reported costs.

3.8.1 Geometry

Pneumatically formed domes have been constructed up to 100 m, and proposals for
even larger ones exist. �e largest fabric-formed Ctesiphon barrel vault has a span of
34 m, while the largest �exibly formed hypar is the 38 m span Pentagon Hall (noted
as having a 22 m span for each of its �ve segments). According to Candela, the upper
economical limit for shells is about 30 m (Cassinello et al. 2010), presumably based
on the use of timber formworks. Isler suggested large spans in excess of 90 m are not
appropriate (Isler 1994).

Figure 3.53 shows the rise and thickness of precedent, �exibly formed shells relative
to their span. Examples cast on rigid timber formworks, by Isler (synclastic) and
Candela (anticlastic), are added for reference. �e rise of Ctesiphon shells increases
logarithmically relative to the span, with the Chivas Distillery Warehouses as an
outlier, being relatively shallow. �ese warehouses were supported on 10 � high
buttressed walls, so the total height is comparable to other Ctesiphon shells of similar
span. �e much shallower �exibly formed hypars follow a linear relation between
span and rise. Pneumatically formed domes like theDomecrete systemwere generally
semi-spherical, so with a �xed rise-to-span ratio of 1:2. Binishells, and other systems
have been shallower as well.

�e Ctesiphon shells have a roughly linear relation between thickness and span, so
maintaining similar slenderness, regardless of size. �ere is no strong relation for
the hypars, with the RSPL Poolside Canopy shell being particularly heavy. �e LCH
and Pentagon Hall have the same slenderness as Candela’s work, which is regarded
as the standard for very slender shells. It is noted that the RSPL Poolside Canopy
shell used C20/25 concrete, the Purdue shell C50/60 and the most slender, Pentagon
Hall, used C60/75. Pneumatically formed domes tend to be relatively thick, possibly
due to the decreasing post-buckling capacity of domes in general.

Overall, the most shallow and slender examples found are anticlastic hypars.
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Figure 3.53: Span versus rise (shallowness) and thickness (slenderness) of precedent, �exibly
formed shells. Isler’s Deitingen gas station and Candela’s Xochimilco Los Manantiales
restaurant, constructed on timber formworks, included between brackets for reference.

3.8.2 Material

Application of concrete has been done by spraying for the pneumatic domes and
the Pentagon Hall. Waller & Aston (1953) also recommended the use of gunite for
the larger Ctesiphon shells, although most seem to have been hand-rendered. Flint
& Low (1960) speci�cally argued the use of gunite as a �nal �nish in order to save
on cost. In the Pentagon Hall, it was applied from underneath, demonstrating the
clearances a �exible formwork can a�ord. Most contemporary airformed domes
are sprayed from the inside as well, including the insulation foam. Concrete for
smaller Ctesiphon and LCH shells were applied by brushing and hand-rendering.
�e Purdue and RSPL Poolside Canopy shells were also done by hand.
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�e strength of concrete has varied, with concrete as low as C25/30 for Ctesiphon
and LCH shells, and up to C60/75 for Pentagon Hall. Whenever reported, maximum
aggregate sizes were small (about 1 mm) and water-cement ratios were about 0.40
(typical for early gunite and contemporary shotcrete as well). Other materials have
been used instead of concrete: ice, or reinforced ice (pykrete); PU foam; and carbon
FRP.

Short-span Ctesiphon and LCH shells are unreinforced, apart from the fabric or
mesh shuttering le� behind. Larger shells have all been traditionally steel reinforced
with steel reinforcement meshes and bars. �e Pentagon Hall is noteworthy for its
additional use of the wire formwork to post-tension the roof.

Recent prototypes have included newer reinforcement materials and types, including
the use of polymer �bre grids, textiles and mats as well as steel and polymer �bres.

3.8.3 Formwork system

Early and existing commercial systems are mostly lost formworks, with fabrics, wires
and cables le� behind. With the exception of Harrington’s system and its current
following in the US, pneumatic formworks are de�ated and recovered. Heifetz
(2016) claims each form can be reused 200 times, and upon repair up to another
150 times. Ctesiphon shells used organic fabrics like hessian, and later expanded
metal lath. Pneumatic formworks started with rubberized fabrics, and today use
PVC coated polyester or nylon fabrics. Prototypes have been built with a wide range
of coated and uncoated polymer fabric, including polyester, nylon, polypropylene
and polyethylene. �e cable-net systems have relied on steel cables or wires, with
XPS foam or woodwool insulation as shuttering. Some examples have even used
paper as shuttering. More recent prototypes all propose and emphasize removable
and potentially reusable systems.

3.8.4 Cost

Historical and recent cost estimates have been converted to cost in 2015 currency for a
UK/US constructionmarket (Table 3.1). Of course, these conversions are increasingly
inaccurate, the further back in time the original estimate was made (“con�dence” in
Table 3.1). Nevertheless, this should give some sense of whether these systems are
�nancially prohibitive when placed in a modern construction context.
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�e cost for the Ctesiphon system is about 150-390 €/m2 depending on the span
(Billig 1946). An additional 40 and 25 % will include the �oor and foundations (Billig
1955). �e a�ordability can be explained by the repetition in the shape of these shells,
allowing reuse of design and engineering works, as well as the falsework arches. �e
use of unskilled labour would also have contributed.

An estimate for the PentagonHall roof comes to 380 €/m2 with 34% for the concreting
(Flint & Low 1960). For the Purdue golf clubhouse shell, the cost is about 510 €/m2
with 20 % spent on concreting, shoring and reinforcement (Waling et al. 1964). An
additional 33 % includes the roof �nishes, �oor and foundations. For the �nished
building this cost is more than doubled (×2.18). �e di�erence in cost between
these two contemporary systems is due to the steelwork and the insulation: the steel
edge and ridge members were custom fabricated, and its XPS insulation foam was
experimental at the time.

Mathur (2015) cites the cost at 150 €/m2 for a 50 m2 shell, but based on having used
his system up to a span of 5.5 m at the time.

Heifetz (1970) quotes 430 €/m2 for a 99 � span, pneumatically formed dome, indicat-
ing a comparable cost to the contemporary Purdue and Pentagon cable-net formed
shells. For smaller spans, down to 20 �, the cost is a low as 170 €/m2. Today, for
pneumatic formworks, Monolithic Constructors quotes 625 €/m2 for a shell and
integrated concrete �oor, and slightly more than double for the �nished shell (×2.17).
South (1990) cites two speci�c projects at the �nished cost of about 775-910 €/m2.
PIRS’ two largest projects cost 1’100 €/m2 in total, similar to Monolithic.

Torsing et al. (2012) mention that, based on cost estimates for a competion design, an
81.5 m span hypar shell including the foundations and using a cable-net and fabric
formwork would cost about 1286 $/m2, with 31 % due to the formwork.

In summary, the cost of a �exibly formed shell of spans between 1 and 5 m may be as
low as 150 €/m2, and 400-500 €/m2 between 5 and 40 m. An additional 33 to 65 %
will take the �oor and foundation into account. Multiplying the total by a factor of
up to 2.2 on top of that indicates the total cost of a �nished building.

Compared to traditionally formed shell structures, cost savings have been claimed
between 20 and 25 % for the funicular shell �oors, the Domecrete system, the Li�-
Shape process and Pentagon hall, up to 40 % by Mathur (2015) for his RSPL Poolside
Canopy shell.
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3.9 Historical analysis

�is analysis summarizes the historical development of �exible formworks for shell
structures, against the backdrop ofmajor political and economic events, and changing
value of steel, concrete, timber, textiles and labour. �roughout this analysis, some
publically available US statistics are used as they go back to the early twentieth
century. It is assumed that due to increased globalization, e�ects seen in the US
economy are su�ciently valid to draw more general conclusions.

Innovations in �exible formworks for shells were initially motivated by housing crises
following the Great Depression and the SecondWorld War, and later by the looming
end to the golden era of concrete shells.

Wallace Ne� devised the Airform system for pneumatically formed shells in response
to the 1940s housing crisis, building 2’500 of them in the following two decades.
Across the Atlantic, low-cost housing was also the motivation for James Waller’s
Nofrango system. Figure 3.54 shows that cost of concrete and steel were highly
volatile during this time. A�er the war, his Ctesiphon system was presented at the
1954 International Exhibition on Low-Cost Housing in India (Billig 1955). Over �ve
hundred Ctesiphon corrugated barrel vaults and domes were built, attributed to
increasing demand for covering of large unobstructed spaces, and to global shortages
of steel and timber (Waller & Aston 1953). Ramaswamy’s low-cost funicular shell
roof and �oor were also developed due to post-war shortages in steel and cement in
India (Ramaswamy 1968).

However, conventional rigid formwork systems were still competitive as Félix Can-
dela “could not charge owners what [his umbrella shells] cost. �ey were so inexpen-
sive that it would undermine the industrial building market” (Ketchum 2016).

During the 1960s, the cost of conventional timber formwork became the main
incentive to explore �exible formworks, as the price of timber had steadily risen
up to the 1950s (Figure 3.54). �is caused a �rst wave of academic experiments on
�exible formworks (1960-1975). New concepts were the use of gridshells by Marsh III
(1964) and Oberdick (1965a) or discrete networks by Flint & Low (1960) and Waling
et al. (1964). �e �rst two both cite minimizing the need for prefabrication as
another advantage, possibly due to negative views on the quality of prefabricated
components at the time. Flint & Low (1960) alsomention that conventional formwork
has di�culty to produce shapes other than true hyperbolic paraboloids. Waling et al.
(1964) go as far as suggesting the cost of formwork acted as a deterrent to engineers
that were even considering a shell structure in their projects.
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Figure 3.54: Historical Relative Producer Price Index (PPI) (at producer level) (USBLS 2016),
and commodity (Kelly et al. 2013) or export (FAOSTAT 2016) value per metric ton (at
consumer level) in the US of building materials for concrete shells. Values corrected for

in�ation, and both measures normalized to 1970 (=100).
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By the 1970s, the era of concrete shells was considered to be over by many, including
Kersavage (1975). He explored fabric formworks for hypars as a possible solution,
but his system only later found application in developing countries, many in the last
decade. �e 1970s energy crisis was the death knell for concrete shells, as the cost of
concrete, steel and particularly timber reached new highs (Figures 3.54). In 1969, a
distraught Candela said: “I am out of place in today’s world and I do not know what
to do nor if I am worth anything” (Cassinello et al. 2010).

Around that same time, Dante Bini, Horrall Harrington and Haim Heifetz all com-
mercially constructed airformed domes and secured patents. Meanwhile, the earliest
patents expired, naturally leading tomore competition. Pneumatically formed domes
continued their success, with over 70’000 claimed to have been built since, due to the
increasing availability and a�ordability of synthetic �bres for coated, woven fabrics.
In general, the relative price of textiles has decreased, seemingly undisturbed by
larger global and economic events (Figure 3.54). �e other main factor of cost, labour,
accounts for only 10 % of cost in pneumatic formworks (South 1990). Furthermore,
relative labour costs were also constant, as increased income equality caused wages
to stagnate from 1970 onward (Figure 3.55).

Figure 3.55: Historical median wage and salary income for males in the US in 2014 dollars
(Bureau 2016).

�e 1980s seems to have been a promising economical period for conventional shell
construction to recover, but it never did. Chistiansen (1988) showed hyperbolic
paraboloid construction to be cheaper than wood framing, but depending on the use
ofmoveable, reusable forms, and a�er taking long-termmortgage and insurance costs
into account. Among other reasons, Isler (1995) attributed the rise of prefabrication
and mass production for the continued decline of shells. �e 1990s saw the cost of
timber increase again due to federal reductions in forest harvests, making traditional
formworks more expensive.
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�e current revival of �exible, particularly fabric, formworks could be attributed to
the Internet, and growing awareness between those active in this area, and exposing
those who might be interested. �e work carried out at CAST, founded in 2002,
generated great interest among architectural �rms and academic institutions. �is
also coincided with the general trend of complex, doubly curved geometry in contem-
porary architecture and construction, and associated struggles to devise a�ordable
and practical fabrication methods. �ese trends might have been fueled by the global
real estate bubble (Figure 3.54).

�is began a second wave of experiments (2002–present) in �exible formworks for
shells, carried out at CAST as well as other academic institutions and their collabora-
tors: Eindhoven University of Technology, Netherlands; University of Edinburgh,
Scotland, UK; Vrije Universiteit Brussel, Belgium; Anhalt University of Applied Sci-
ences, Germany; and, ETH Zurich, Switzerland. �e International Society of Fabric
Forming (ISOFF) was founded, and dedicated international conferences (ICFF) have
been held, the �rst in 2008 at CAST in Winnipeg, Canada, followed by others in
Bath, UK and in Amsterdam, Netherlands.

3.10 Conclusions

Based on this chapter and its references, the following observations are made:

• thoughout the twentieth century, various competing concepts for fabric-formed
�oors and pneumatically formed domes have been patented;

• multiple �exible formwork systems for shell structures have enjoyed commer-
cial success in the past, speci�cally for roof and �oor units, barrel vaults and
domes, with the latter maintaining its success to the present;

• motivations for developing these systems initially were a high demand for low-
cost housing; later, post-war shortages of steel, cement and timber, followed
by the further rising cost of timber and labour;

• a �rst wave of academic experiments (1960-1975) tackling the increased cost
of formwork was unable to avert the general decline of concrete shells;

• during this period, emphasis was placed on the use of new materials, such as
polymer foams;
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• a second wave of academic experiments (2002-present) is still motivated by
the cost of formwork, but also contemporary trends in architecture (related to
developments in computation), and sustainability (due to global warming);
and,

• further emphasis is placed on new reinforcement strategies and reusable form-
works.

In terms of advantages of �exible formworks for shells, these references claim that:

• they are a�ordable as

– fabrics are inexpensive and widely available;
– these systems require little or no falsework; and,
– little or no skilled labour is needed (if properly supervised);

• they allow unobstructed access to the formwork from underneath, o�ering
opportunities to spray concrete and insulation under controlled conditions,
and otherwise continue construction and operation;

• they allow the construction of non-standard shell shapes that can provide
renewed architectural interest, and are potentially more e�cient;

• they are lightweight systems, saving on transportation, handling, and storage;
and,

• they do not require release agents or chemicals for demoulding, and result in
improved surface quality of the concrete, depending on the permeability of
the chosen fabric.

�ere is evidence that �exible formworks o�er a competitive means to construct thin
concrete shells in today’s construction industry:

• several sources have quoted 25-40 % cost savings for �nished shells when using
�exible formworks compared to timber formworks;

• cost estimates for fabric and cable-net formed shells, corrected for in�ation,
are comparable to those for airformed domes, which sustain several businesses
today;
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• those estimates are below quoted costs for conventional timber and milled
foam formworks (Section 2.5.7), representing savings of up to about 40 %;

• the cost of textiles has been declining for decades, while wages have stagnated
since 1970; and,

• the cost of steel, cement and sawnwood at the consumer level are comparable
or lower than pre-1970 levels.
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Part III

Numerical methods
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Mechanics without �nite elements is like rock ’n’ roll without electricity.

— Juan Carlos Simo, from Carstensen &Wriggers (2009)





CHAPTER FOUR

Discretization

Numerical methods for structural form �nding and analysis �nd approximate solu-
tions to boundary value problems for partial di�erential equations. An essential part
of this is subdividing the problem into a discrete assembly of smaller constituent
parts, or �nite elements, that locally approximate the original problem.

�is chapter explains how topological and geometrical information on �nite elements
and their assemblies is represented in the context of this thesis1. �is is then used
in the next chapters on form �nding and constrained form �nding, Chapters 5 and
6. �e chosen representation appears o�en in the �eld of form �nding, particularly
for the force density methods and related work. It is highly suitable for systems with
only linearly interpolated elements allowing for simple vector-matrix notation. On
the other hand, it does not extend well to higher-order elements and, likely as a result
of that, it is rare in the general �eld of structural mechanics.

Section 4.1.1 introduces branch-node matrices that de�ne the connectivity between
branches and nodes in a network. Section 4.1.2 shows how these, together with nodal
coordinates, can be used to compute coordinate di�erences, branch lengths and
triangular surface areas. Section 4.2 explains how, together with mechanical infor-
mation such as forces, stresses and strains, so-called force densities are determined
for di�erent elements. Derivatives for force densities with respect to coordinates
are given, required in Chapter 5 to form sti�ness matrices. Section 4.2.5 discusses
di�erent coordinate systems for triangle elements appearing in literature. Section
4.2.6 explains that constant forces, force densities, extended force densities, stresses,
or stress densities lead to networks or surfaces with di�erent minimum geometric
properties. Section 4.3 cites various con�icting opinions on the performance of
higher-order elements in form �nding, compared to linear elements.

1�is chapter is partially based on Veenendaal & Block (2012b, 2018).
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4.1 Networks

A discrete assembly of �nite elements such as line and surface elements is called
a mesh. It is possible to convert quantities within the plane of triangular surface
elements to linear properties along its element edges. In this way, we may view this
assembly as a network rather than a mesh. Topological concepts from graph theory
can then be used to deal with descriptions of the overall assembly, required to solve
our numerical problem.

4.1.1 Topology

A sparse branch-node matrix C̄ is used here to describe the topology of a network of
branches and nodes. �e transpose of C̄ is de�ned as the incidence matrix in graph
theory (Bondy & Murty 1976).

Fenves & Branin Jr. (1963) and Connor (1976) applied such matrices to the structural
analysis of frames, and Schek (1974) �rst introduced the use of branch-node matrices
in form �nding, applied to the force density method (Linkwitz & Schek 1971). Other
form-�nding methods have also been formulated in this manner (Veenendaal &
Block 2012b, 2018). Argyris (1964) already extended their use to include triangle
elements (using the termdi�erencematrix), and Singer (1995) to tetrahedral elements.
�e use of the incidence matrix was compared favourably by Christensen (1988)
to then-standard approaches in the �nite element method to assemble a sti�ness
matrix from its explicitly computed, constituent element sti�ness matrices (see also
equation (4.55) and subsequent discussion).

For a network with m branches and n nodes, the branch-node matrix C̄ is of size
[m × n], where the entries of the ith row and jth column,

C̄ i j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

+1 if node j is the head of branch i ,
−1 if node j is the tail of branch i, and
0 otherwise.

(4.1)

Note that the direction of the branch vectors may be chosen arbitrarily. For a line
element, consisting of one branch and two nodes, and a triangle element, consisting
of three branches or edges, and three nodes (Figure 4.1),
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Figure 4.1: Line and triangle elements with conventional side and node numbering

C̄ = [ −1 1 ] and C̄ =
⎡⎢⎢⎢⎢⎢⎣

0 −1 1
1 0 −1
−1 1 0

⎤⎥⎥⎥⎥⎥⎦
.

Strictly speaking, the order and direction of the branch vectors in the triangle element
are also arbitrary, but are chosen here to conform with conventions in structural
mechanics (as a result, the strain-displacement matrix in equation (4.55) will have
the same structure as in literature).

Figure 4.2 shows the branch-node matrix for a larger network with multiple line and
triangle elements. �e example is based on a similar one appearing in Schek (1974)
and Block (2009).

For convenient use in problems involving three-dimensional networks, Singer (1995)
used a [3m × 3n]matrix, such that for a single line and triangle,

C̄ = [ −I I ] and C =
⎡⎢⎢⎢⎢⎢⎣

0 −I I
I 0 −I
−I I 0

⎤⎥⎥⎥⎥⎥⎦
, (4.2)

where I is an identity matrix and 0 is a null matrix, both of size [3× 3]. For an entire
network, we can generalize equation (4.2) to

C = C̄⊗ I. (4.3)

where ⊗ is the Kronecker product. �e matrix C is also referred to as the aug-
mented branch-node incidence matrix, or connectivity matrix (Connor 1976, p. 124).
Linkwitz (1999) also uses such a [3m × 3n] connectivity matrix but with a di�erent
ordering (by dimension �rst, then triangle element, then triangle side, instead of
dimension last).
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4.1.2 Geometry

For each of the three dimensions in the global Cartesian coordinate system (X ,Y , Z),
there are n nodal coordinates:

x̄ = (X1 ,X2 , . . . ,Xn)T,
ȳ = (Y1 ,Y2 , . . . ,Yn)T and
z̄ = (Z1 ,Z2 , . . . ,Zn)T.

�ese 3n nodal coordinates are assembled in two di�erent ways, depending on their
use. Either they are horizontally stacked as an [n × 3] nodal coordinate matrix,

X = [ x̄ ȳ z̄ ] , (4.4)

or vertically arranged as a [3n × 1] nodal coordinate vector by vectorization of XT,
meaning that

x = (X1 ,Y1 , Z1 , X2 , . . . , Zn)T . (4.5)

�e n nodes are declared to be either interior (i.e. free) or �xednodes, with n = ni + nf .
Note that thismay di�er in each direction if, for example, a node is �xed in x direction
but free tomove in y direction. In our case, the nodes are assumed to be either interior
or �xed in all directions.

�e n and 3n columns of the branch-node matrices C̄ and C and the n and 3n rows
of the nodal coordinate matrix X and vector x are resequenced accordingly. �e
branch-node matrices

C̄ = [ C̄i C̄f ] and C = [ Ci Cf ] , (4.6)

where C̄i and Ci are [m × ni] and [3m × 3ni] branch-node matrices for the interior
nodes, and C̄f and Cf are [m × nf] and [3m × 3nf] branch-node matrices for the
�xed nodes (Figure 4.2). �e coordinates

X = [
Xi
Xf

] and x = [
xi
xf
] , (4.7)

169



where Xi and xi are an [ni × 3] matrix and [3ni × 1] vector of the interior node
coordinates and Xf and xf are an [nf × 3]matrix and [3nf × 1] vector of the �xed
node coordinates.

To further distinguish between properties of branches and triangle edges, the m and
3m rows of the branch-nodematrices are split intom = mb+mt and 3m = 3mb+3mt
rows (Figure 4.2),

C̄ =
⎡⎢⎢⎢⎢⎣

C̄i,b C̄f ,b
C̄i,t C̄f ,t

⎤⎥⎥⎥⎥⎦
and C =

⎡⎢⎢⎢⎢⎣

Ci,b Cf ,b
Ci,t Cf ,t

⎤⎥⎥⎥⎥⎦
. (4.8)

�e coordinate di�erences, or edge vectors, are

[ ū v̄ w̄ ] = C̄X and u = Cx, (4.9)

and the [3m ×m] coordinate di�erence matrix

U = [ Ū V̄ W̄ ]T , (4.10)

with Ū, V̄ and W̄, the diagonal matrices of ū, v̄ and w̄. �is matrix is reordered by
branch, so that

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

U1 V1 W1 0 0 0 . . . 0 0 0
0 0 0 U2 V2 W2 0 0 0
⋮ ⋱ ⋮
0 0 0 0 0 0 . . . Um Vm Wm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

.

�e [m ×m] branch lengths

L = (Ū2 + V̄2 + W̄2) 12 = (UTU) 12 (4.11)

and the squared lengths LTL = UTU and LTl = UTu, where vector l is the diagonal
of matrix L.

For a triangle with three edge lengths l, the surface area can be expressed algebraically
using Heron’s formula (Buchholz 1992)
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16A2 = lTLNLl, so that A = 1
4
(lTLNLl) 12 , (4.12)

where

N =
⎡⎢⎢⎢⎢⎢⎣

−1 1 1
1 −1 1
1 1 −1

⎤⎥⎥⎥⎥⎥⎦
. (4.13)

4.2 Finite elements

�e simplest approximations in a �nite element mesh are carried out by linear ele-
ments, which interpolate any physical properties linearly between the element nodes.
When including material behaviour, line and surface elements are referred to as
bar or truss and membrane elements respectively. �e bars are meant to carry only
tensile force, and hence can also be called cable elements.

�ere is no concensus, but some evidence that higher-order, quadratic interpolation
would o�er better performance (Section 4.3). In this thesis, and indeed most sources
on form �nding, linear line and linear triangular surface elements are used. �e
use of branch-node matrices may also not be straightforward when combined with
quadratic interpolation (Section 4.4).

�e following sections de�ne force densities and their derivatives with respect to
coordinates for each element type. �ese equations are summarized in Table 4.1.
Subscripts b and t are used to distinguish between branches, representing line and
bar elements, and triangles, representing triangle and membrane elements. For
legibility, these subscripts are omitted for any variables except the force densities.

4.2.1 Line element

�e branches have length l and forces f . �eir ratios

qb = L−1f , (4.14)
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are known as force densities (Schek 1974) or tension coe�cients (Barnes 1977) (Figure
4.3), where either forces or the force densities themselves are prescribed. �e use
of the term density refers to the linear density rather than the area or volumetric
density of a physical property; here, force instead of, more typically, mass. Miki &
Kawaguchi (2010) prescribe so-called extended force densities wb, such that

qb = L−1f = 4L2wb . (4.15)

In their particular approach, these extended force densities are said to generate more
practical designs for systems with both tension and compression, such as tensegrity
structures and tension structures with support struts.

Block (2009) introduced the use of graphic statics, speci�cally reciprocal form and
force diagrams, as a means to de�ne force densities. �is method, thrust network
analysis, allows for the interactive design of compression/tension-only shell struc-
tures.

L =
√
U 2 + V 2 +W2

Q = F
L

Figure 4.3: Single line element in space with force density Q and length L calculated from
force F and coordinates (X1 ,Y1 , Z1) and (X2 ,Y2 , Z2).

Tensile forces and force densities have a positive sign. In the linear force density
method, the force densities are prescribed and constant. If this is not the case,
some methods require their derivative with respect to coordinates. With the partial
derivative already given by Schek (1974), and using the reciprocal rule,

∂l
∂xi

= L−1UTCi and
∂l−1

∂xi
= −L−2 ∂l

∂xi
= −L−3UTCi , (4.16)

the derivative of force densities with respect to coordinates becomes
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∂qb
∂xi

= F∂l
−1

∂xi
= −L−1Q̄bL−1UTCi , (4.17)

where Q̄b is the diagonal matrix belonging to qb.

Reciprocal rule of di�erentiation
Given a function that is the inverse, or reciprocal, of another di�erentiable
function,

f (x) = 1
g(x) ,

with g = g(x), the derivative of that function is

d
dx

( 1
g
) = − 1

g2
dg
dx
.

For the extended force densities in equation (4.15),

∂qb
∂xi

= 4Wb
∂L2

∂xi
= 8WbUTCi . (4.18)

4.2.2 Spring and bar elements

In spring systems, the forces f are governed by Hooke’s law (Barnes 1999, Bhooshan
et al. 2014),

qb = L−1Ks(l − l0) = ks − L−1Ksl0 , (4.19)

where Ks is a diagonal matrix of spring constants ks, and l0 are the initial, or rest,
lengths of the springs. For zero-length springs proposed by Harding & Shepherd
(2011), where l0 = 0, equation (4.19) reverts to qb = ks, meaning their method is
identical to the linear force density method in terms of its elements.
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Q = F
L
= ks

L − L0
L

= EA
L0

L − L0
L

Figure 4.4: Single spring or bar element with the force F calculated from the spring constant
ks or axial sti�ness EA and the initial and current lengths L0 and L.

For linear elastic bars in sti�ness matrix methods and dynamic relaxation,

qb = L−1EAe = L−1L−10 EA(l − l0) = EA(l−10 − l−1), (4.20)

where E are the Young’s moduli,A the cross-sectional areas of the bars, L0 a diagonal
matrix of the initial lengths l0, and where we have assumed small strains, or Cauchy
strains (Argyris et al. 1974, Tabarrok & Qin 1992),

e = L−10 (l − l0) (4.21)

Comparing equations (4.19) and (4.20), it is clear that spring constants ks are the
ratios of axial sti�nesses EA and initial lengths l0. With this relation, Ks = L−10 EA,
the derivatives are (Linkwitz 1999)

∂qb
∂xi

= −KsL0
∂l−1

∂xi
= L−1L−1KsL0L−1UTCi

= L−1L−1EAL−1UTCi , (4.22)

which, given that from equation (4.19) it follows that L−1KsL0 = Ks −Qb, we can
rewrite it to (Veenendaal & Block 2012b)

∂qb
∂xi

= L−1KsL−1UTCi − L−1QbL−1UTCi

= L−1L−10 EAL−1UTCi − L−1QbL−1UTCi , (4.23)

175



which we will use later to derive sti�ness matrices as they appear in Haug & Powell
(1972) and Knudson & Scordelis (1972). We would also have arrived here, by taking
the derivative of equation (4.20) using the product rule, requiring equation (4.17)
and the derivative of equation (4.21),

∂qb
∂xi

= L−1EA ∂e
∂xi

+ F∂l
−1

∂xi
= L−1L−10 EAL−1UTCi − L−1QbL−1UTCi . (4.24)

Product rule of di�erentiation
Given a function that is the product of two other di�erentiable functions,

f (x) = g(x) ⋅ h(x), (4.25)

with g = g(x) and h = h(x) its derivative is

d
dx

(g ⋅ h) = g ⋅ dh
dx

+ h ⋅ dg
dx
. (4.26)

Instead of Cauchy strains in equation (4.21), we can assume large strains, or Green
strains (Pauletti & Pimenta 2008), which can be split into their linear parts, corre-
sponding to Cauchy strains, and their nonlinear, or quadratic, parts,

e = 1
2
L−20 (Ll − L0l0)

= L−10 (l − l0) + 1
2
L−20 (L + L0)(l − l0)

= L−20 (L0l − L0l0) + 1
2
L−20 (Ll − 2L0l − L0l0)

= L−20 (U0u −U0u0) +
1
2
L−20 (Uu − 2U0u −U0u0). (4.27)

�e force densities

qb = L−1EAe =
1
2
L−1L−20 EA(Ll − L0l0) (4.28)
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and their derivatives

∂qb
∂xi

= L−1EA ∂e
∂xi

+ F∂l
−1

∂xi
= L−1L−20 EAUT0Ci + L−1L−20 EA(U −U0)TCi − L−1QbL−1UTCi
= L−10 L−1EAL−10 UTCi − L−1QbL−1UTCi . (4.29)

4.2.3 Triangle element

Typically, in literature on form �nding, a membrane surface is discretized using
triangle elements, and occasionally using quadrilaterals. �ese triangle elements
are no di�erent from those used in the �nite element method for structural anal-
ysis, where they are referred to as linear, three-node triangular elements (TRIA3)
or constant strain triangles (CST). In form �nding, the descriptions of triangular
elements vary in detail and mathematical form. �ey are not always identi�ed under
a common name, but equivalent nonetheless. Section 4.2.5 summarizes di�erent
coordinate systems that are used, which apart from notation, largely explain these
di�erent descriptions.

�e surface is governed by membrane stresses, which de�ned in the local (x , y)
coordinate system are, in tensor or, using Voigt notation, in vector form

σ = [σxx σy y σx y]
T = [σx σy τx y]

T . (4.30)

�e natural stresses, i.e. the stresses along the triangle sides, can be written as a
function of the local Cartesian stresses, and vice versa:

s = Ψ−Tσ , σ = ΨTs, (4.31)

where,

Ψ =
⎡⎢⎢⎢⎢⎢⎣

c21 s21 c1s1
c22 s22 c2s2
c23 s23 c3s3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

l1 . .
. l2 .
. . l3

⎤⎥⎥⎥⎥⎥⎦

−2

0

⎡⎢⎢⎢⎢⎢⎣

u21 v21 u1v1
u22 v22 u2v2
u23 v23 u3v3

⎤⎥⎥⎥⎥⎥⎦
= L−20 H, (4.32)

with the direction cosines c i = cosθ i = u i/l i and s i = sinθ i = v i/l i , and angles as in
Figure 4.5.
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Figure 4.5: Transformation angles θ i of a triangle element.

�emembrane stresses can be converted to force densities acting along the triangle
sides (Pauletti & Pimenta 2008, Singer 1995),

qt = AtH−Tσ (4.33)

also referred to as natural force densities, where A is the triangle surface area accord-
ing to equation (4.12), t is the thickness, and

HT = 1
4A2

⎡⎢⎢⎢⎢⎢⎣

−v2v3 −u2u3 v2u3 + u2v3
−v3v1 −u3u1 v3u1 + u3v1
−v1v2 −u1u2 v1u2 + u1v2

⎤⎥⎥⎥⎥⎥⎦
, (4.34)

de�ned in the local coordinate system (x , y). Similar expressions are given by Barnes
(1999) and Li & Chan (2004).
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⎡⎢⎢⎢⎢⎢⎣

Q1
Q2
Q3

⎤⎥⎥⎥⎥⎥⎦
= At

⎡⎢⎢⎢⎢⎢⎣

u21 v21 u1v1
u22 v22 u2v2
u23 v23 u3v3

⎤⎥⎥⎥⎥⎥⎦

−T ⎡⎢⎢⎢⎢⎢⎣

σx
σy
τx y

⎤⎥⎥⎥⎥⎥⎦

= t
4A

⎡⎢⎢⎢⎢⎢⎣

−v2v3 −u2u3 v2u3 + u2v3
−v3v1 −u3u1 v3u1 + u3v1
−v1v2 −u1u2 v1u2 + u1v2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

σx
σy
τx y

⎤⎥⎥⎥⎥⎥⎦

Figure 4.6: Triangle element with three force densities Q i calculated from stresses σ , area A,
thickness t and coordinate di�erences u i and v i .

For larger networks, H is a [3m × 3m] block diagonal matrix, where each [3 × 3]
block corresponds to equation (4.34), and similarly, σ is a [3m × 1] vertically stacked
vector. Strictly speaking, each area and thickness would have to be repeated three
times, A⊗ I3 and t ⊗ I3, and then assembled to a [3m × 3m] block diagonal matrix
as well.

An equivalent formulation to equation (4.33), proposed here, is

qt =
t
8A
NU∗TSu∗ (4.35)

where N is according to equation (4.13), u∗ and U∗ are de�ned in local coordinates
and of size [2m × 1] and [2m ×m],

u∗ = [u1 v1 u2 v2 u3 v3]
T , U∗ =

⎡⎢⎢⎢⎢⎢⎣

u1 v1 . . . .
. . u2 v2 . .
. . . . u3 v3

⎤⎥⎥⎥⎥⎥⎦
, (4.36)

and

S = I3 ⊗ [ σy −τx y
−τx y σx

] , (4.37)
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For the speci�c case of minimal surfaces, the corresponding stresses are uniform
and isotropic, σ0 = [σ0 , σ0 , 0]T with σ0 > 0. For simplicity, σ0 = 1 and t = 1. Using
equation (4.11), equation (4.35) then simpli�es to (Singer 1995),

qt,m = σ0 t
8A
NU∗Tu∗ = 1

8A
NLTl. (4.38)

We notice that this de�nition is independent of the chosen coordinate system.

Chain rule of di�erentiation
Given a function that is the composition of two other di�erentiable functions

f (x) = g(h(x)), (4.39)

and writing g = g(h(x)) = g(u), where u = h(x), its derivative

dg
dx

= dg
du

du
dx
. (4.40)

With the derivative of area with respect to edge lengths, the reciprocal rule, and the
chain rule,

∂A
∂l

= 1
8A
lTLNL, ∂A−1

∂l
= −A−2 ∂A

∂l
and, (4.41)

∂A−1

∂xi
= −A−2 ∂A

∂l
∂l
∂xi

= − 1
8A3
lTLNUTCi , (4.42)

the derivative of the force densities with respect to coordinates,
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∂qt
∂xi

= t
8A
N
∂U∗TSu∗

∂xi
+ t
8
NU∗TSu∗

∂A−1

∂xi

= 2t
8A
NU∗TS

∂u∗

∂u
∂u
∂xi

− t
82A3

UTSulTLNUTCi

= t
4A
NU∗TSλTCi − 1

A
qtqTt,mU

TCi or,

∂qt
∂xi

= t
4A
NU∗TSλTCi − AtH−TσσT0H

−1UTCi . (4.43)

where λT is the coordinate transformation matrix between the local and global
coordinate system (Rao 2004, p. 361-3). �is derivative will be used later to de�ne a
non-symmetric geometric sti�ness matrix as it appears in Spillers et al. (1992) and is
discussed in Pauletti & Pimenta (2008). For the simpler case of minimal surfaces
(Singer 1995), S becomes an identity matrix, so that

∂qt,m
∂xi

= 1
8A
N
∂Ll
∂xi

+ 1
8
NLl

∂A−1

∂xi

= 2
8A
NL

∂l
∂xi

− 1
82A3

NLllTLNUTCi

= 1
4A
NUTCi −

1
A
qt,mqTt,mU

TCi or,

∂qt,m
∂xi

= 1
4A
NUTCi − AtH−Tσ0σT0H

−1UTCi , (4.44)

which will lead to a symmetric geometric sti�ness matrix.

Maurin & Motro (1997, 2001) developed the surface stress density as an analogue to
the force density for line elements. �e surface stress density is de�ned as

Qs =
σ0
A
. (4.45)

For constant surface stress densities, this generates a geometry that minimizes the
sum of squared element areas (Section 4.2.6). �is can be expressed as force densities
along the triangle sides (Veenendaal & Block 2018),

qt,s =
1
4
NLl, (4.46)
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which is identical to equation (4.35) if Qs = 2 and t = 1, suggesting equation (4.45)
should be rede�ned to Qs = σ0/2A. �e derivatives of the force densities with respect
to coordinates,

∂qt,s
∂xi

= 1
4
N
∂Ll
∂xi

= 2
4
NL

∂l
∂xi

= 1
2
NUTCi . (4.47)

4.2.4 Membrane element

For an isotropic, linear elastic material, with plane stress, the constitutive equation
(material law),

σ = Dε, (4.48)

where the strains,

ε = [εx εy γx y]
T . (4.49)

and the constitutive matrix (Barnes 1999, Tabarrok & Qin 1992)

D = E
1 − ν2

⎡⎢⎢⎢⎢⎢⎣

1 ν 0
ν 1 0
0 0 (1 − ν) /2

⎤⎥⎥⎥⎥⎥⎦
, (4.50)

with Young’s modulus E and Poisson’s ratio ν.

�e natural strains, i.e. the strains along the triangle sides, can be written as a function
of the local Cartesian strains, and vice versa:

e = Ψε, ε = Ψ−1e. (4.51)

�e natural strains can be expressed in the form of Green strain, equation (4.27),
which is typically used for large deformations (Pauletti & Pimenta 2008, Singer 1995),
such that

ε = Ψ−1e = 1
2
H−1L20L

−2
0 (Ll − L0l0) =

1
2
H−1 (Ll − L0l0) , (4.52)
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withH−T already given in equation (4.34). �e force densities

qt = AtH−Tσ = AtH−TDε = 1
2
AtH−TDH−1 (Ll − L0l0) . (4.53)

Figure 4.7:Membrane element with force densities according to equation (4.53) due to
deformations between the initial and deformed con�gurations.

�e derivatives of the force densities due to changes in Ll − L0l0,

∂qt
∂xi

= 1
2
AtH−TH−1 ∂Ll − L0l0

∂xi
= AtH−TDH−1UTCi. (4.54)

�e derivatives of A andH−T with respect to the coordinates were already derived in
equation (4.43), and have been omitted here for brevity.

On a side note, it is possible to rewrite

BλT = H−1UTCi , (4.55)

where B and λT are known as the (linear) strain-displacement matrix and the co-
ordinate transformation matrix respectively, both common in literature on �nite
elements. Matrix B is also explicitly given for a single membrane element by Haber
& Abel (1982), Tabarrok & Qin (1992) and Nouri-Baranger (2002). Matrix λT, for
transformations between local element and global system coordinates is explained
by (Rao 2004, p. 361-3), as cited by Tabarrok & Qin (1992).

�e [3 × 6]matrix B and [6 × 9] λT are de�ned per element, for later assembly into
a global sti�ness matrix. On the other hand,H−1 andUT are [m ×m] and [m × 3m]
block matrices, representing all elements. Together with the [3m× 3ni] branch-node
matrix Ci they can immediately describe the entire system.
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4.2.5 Triangle coordinate systems

Existing form-�nding methods vary in their use of numbering conventions of the
triangle sides as well as coordinate systems to express element equations. �e di�er-
ences in coordinate system do not change the method in any fundamental way, only
their presentation. In each case, we start from an imposed local stress �eld and the
�nal system of equations to be solved is always expressed in the global coordinate
system. �e intermediate quantities di�er: natural or side stresses, forces or force
densities; intrinsic stresses or forces; and/or local nodal forces. �is obscures the fact
that many, seemingly independent methods are in fact analogous or even identical.
�e following coordinate systems have been used in form �nding (Figure 4.8):

• global and local Cartesian element coordinates from �nite element analysis,
using shape functions and strain-displacement matrices (Haber & Abel 1982,
Nouri-Baranger 2002, Tabarrok & Qin 1992);

• local, natural element coordinates (Barnes 1977, Barnes & Wake�eld 1984,
Pauletti & Pimenta 2008, Singer 1995, Tan 1989), with expressions for forces or
force densities parallel to the triangle sides;

• intrinsic coordinates (Maurin & Motro 1998), de�ning forces perpendicular
to the triangle sides; and,

• curvilinear coordinates fromdi�erential geometry, using co- and contravariant
base vectors (Bletzinger & Ramm 1999, Oelkuch & Dieringer 2011, Tabarrok
& Qin 1992).

Figure 4.8: Cartesian, natural, intrinsic and curvilinear coordinate systems, as adopted by
various references, for triangle or membrane elements.

Brew & Lewis (2003b) have expressed the method of dynamic relaxation both in the
original form and using intrinsic coordinates. �e reader is referred to Meek (1991)
for more on all of these coordinate systems, and transformations between them.
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4.2.6 Minimal sum of element lengths and areas

It is possible to view uniform forces and surface stresses as properties of minimal
length and minimal surface networks, or rather networks with a minimal p-norm of
lengths and areas, where p = 1 (Schek 1974, Singer 1995).
Similarly, uniform force and surface stress densities are properties of networks with
a minimal p-norm of lengths and areas, where p = 2. Schek (1974) states that “each
equilibrium state of an unloaded network structure with [constant] force densities
q j is identical with the net, whose sum of squared way lengths weighted by q j is
minimal.” Maurin & Motro (1997) presented the surface strain density method
(SSDM) as an extension of this to surfaces: “a surface performed with identical
surface stress density coe�cients minimizes the sum of squared element areas.”

Miki & Kawaguchi (2010) extended this logic to use p = 4 for line elements with
“extended force densities”, but maintaining p = 2 for surface elements.
Table 4.2 summarizes these types of quantities and the geometric property their use
leads to.

Sum p-norm Lengths Areas
constant 1 force uniform stress

(Schek 1974) (Singer 1995)
quadratic 2 force density surface stress density

(Schek 1974) (Maurin & Motro 1997)
cubic 3 – –
quartic 4 extended force density –

(Miki & Kawaguchi 2010)

Table 4.2: Constant quantity to minimize the varying degrees of sum of lengths or element
areas. E.g. constant force density leads to minimum quadratic sum of lengths.

4.3 Higher-order elements

�e dominant choice for linear triangular elements is probably due to their simplicity
in terms of representation and implementation. For example, the fact that these
elements exhibit constant strain means that no integration procedure is required.
�e bilinear quadrilateral element, even though it is still linear, already requires
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integration along the surface. For most higher-order elements, sti�ness matrices
cannot be conveniently expressed in closed form, and are provided in integral form
only. Section 4.4 adds that their combination with branch-node matrices is not
obvious.

Tabarrok & Qin (1992) assert that due “to the greater geometric nonlinearity of
membrane structures, it is preferable to use a densemesh of primitive elements rather
than a coarse mesh made up of higher order isoparametric elements”, an opinion
echoed by Barnes (1999). Gosling & Lewis (1996) used quadratic quadrilateral
elements (QUAD8), but report no clear advantages.

By contrast, Haber & Abel (1982) o�er the opinion that “curved isoparametric ele-
ments should perform better”. In addition, Oelkuch & Dieringer (2011) have shown
the form �nding of a catenoid to be faster and more accurate when comparing a
coarsemesh of higher-order elements (TRIA6, QUAD8, QUAD9)with the solution of
a dense mesh of simple triangles or quadrilaterals (TRIA3, QUAD4), concluding that
“the use of elements with quadratic shape functions [..] with relatively coarse meshes
can be recommended”, and noting no signi�cant improvement beyond quadratic
elements.

More recent sources have combined form �nding with newer forms of parameteriza-
tion such as cubic splines (Brew & Lewis 2003a, 2007), and isogeometric elements
based on NURBS (Alic & Persson 2016, Philipp et al. 2014). �ey report higher
accuracy per iteration, but do not mention computational e�ort.

4.4 Limitations of branch-nodematrices

�e use of branch-nodematrices is standard in literature on the force density method
and related form-�nding methods. However, its use in structural analysis is rare with
most references already given in Section 4.1.1.

Instead, �nite elements are generally expressed with shape functions, which describe
how deformations in local Cartesian directions are interpolated within an element,
as a function of the deformations at the nodes. Especially if the shape functions are
of a higher order, the use of branch-node matrices is no longer obvious. To illustrate
this, an attempt is made to derive branch-node matrices for a one-dimensional linear
and quadratic element in Table 4.3, starting from shape functions and subsequent
procedure as they appear in �nite element literature.
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linear quadratic

Shape functions N
[ 1
2 (1 − ξ) 1

2 (1 + ξ) ] [ ξ
2 (ξ − 1) ξ

2 (ξ + 1) 1 − ξ2 ]
Strain-displacement matrix B = ∂N

∂ξ
∂ξ
∂x =

2
L
∂N
∂ξ

1
L [ −1 1 ] 2

L [ ξ − 1
2 ξ + 1

2 −2ξ ]
Sti�ness matrix K = ∫

1
−1 B

TEAB L
2 dξ

EA
L

⎡⎢⎢⎢⎢⎣

1 −1
−1 1

⎤⎥⎥⎥⎥⎦
EA
3L

⎡⎢⎢⎢⎢⎢⎢⎢⎣

7 1 −8
1 7 −8

−8 −8 16

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∗

Branch-node matrix C̄ if K = EA
L C̄

TC̄

[ −1 1 ]
√
2
3

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− 32 − 12 2
−1 1 0
1
2

3
2 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Table 4.3: Comparison of the 1D linear and quadratic bar element, to derive a branch-node
matrix. *�e quadratic element requires integration, in our case Simpson’s rule of integration,

as B = B(ξ).

It is noticed that the derivative of linear shape functions with respect to natural
coordinates leads us to the branch-node matrix used here. For the quadratic element,
the derivates of the shape functions can be integrated using Simpson’s rule of integra-
tion to produce a closed-form solution as well. However, the results is a weighted
branch-node matrix, with edges that have multiple vertices (a hypergraph). In doing
so, the elegance of using branch-node matrices is lost.

Simpson’s rule of integration
A de�nite integral can be approximated by evaluation at three points,

∫
b

a
f (x)dx ≈ b − a

6
[ f (a) + 4 f ( a + b

2
) + f (b)] , (4.56)

and the approximation will be exact if f (x) is a polynomial of degree three or
less.
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4.5 Conclusions

�is chapter formulates force densities for line and triangle elements for all form-
�nding methods. �e derivative of these force densities with respect to coordinates
have been de�ned, and will be used to construct geometric sti�ness matrices in the
next chapter.

Structural analysis as well as several form-�nding methods include material prop-
erties. Force densities for spring, bar and membrane elements have been de�ned
for these purposes. Corresponding derivatives with respect to coordinates have an
additional term due to the presence of strain. �ese will be used to construct material
sti�ness matrices in the next chapter.

�e following observations are made:

• branch-node matrices are standard in force density and related form-�nding
methods, but no longer used in literature on structural analysis;

• they provide an elegant means to describe systems of linear elements, but are
not obvious to combine with quadratic or elements of an even higher order;

• there is no concensus, but some evidence that quadratic elements perform
better in the context of form �nding;

• there are many de�nitions for the linear triangle element, but these have been
found to be equivalent; and,

• a line element with a constant force density is identical to a zero-length spring
with a spring constant.

Over the course of this thesis, the following contributions have been made:

• a trivial force density formulation for the spring element (Bhooshan, Veenen-
daal & Block 2014);

• a force density formulation and its coordinate derivative for the triangle ele-
ment;

• a force density formulation and its coordinate derivative for the triangle ele-
ment with constant surface stress density (Veenendaal & Block 2018); and,

• a branch-node formulation for the spline element (Van Mele, De Laet, Vee-
nendaal, Mollaert & Block 2013), not included in this thesis.
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�e ropes [in a hanging model] respond to the static requirements.
To pretend that the architectural shapes directly follow from the ropes is
childish, since they are only a means of verifying stability, to be used at
an appropriate moment. Before stability, there are other aspects to satisfy
[. . . ] it’s like pretending that a barometer tells you the upcoming weather,
or that the thermometer tells you how warm is it (when the sensation of
warmth is a made up of temperature, humidity, wind, etc).

—Antoni Gaudí, from Tomlow (2011)





CHAPTER FIVE

Form finding

�e principle of form follows force is particularly relevant in structures that transfer principle of form follows force is particularly relevant in structures that transfer
their loads purely through axial forces or in-plane stresses. In these cases, where no
bending occurs, shape is determined by forces and vice versa. �ese form-active
shapes are not known in advance, and therefore require a form-�nding process.
Examples of structures that require form �nding are cable nets, shells, gridshells,
tensegrity structures and tensioned or air-supported membrane structures. Numer-
ical form-�nding methods have been applied to each of these types of structures
(Figure 5.1).

�is chapter provides an overview of form-�nding methods, and presents a general
formulation based on these references1. �is formulation can be viewed as a generic
form-�nding method.

Section 5.1 de�nes the concept of form �nding. Section 5.2 provides a description of
existing form-�nding methods for tension structures, and suggests four categories in
which to divide them. Based on these methods, Section 5.3 describes a generic form-
�nding method that may or may not include material properties and uses Newton’s
method for its solution. Speci�c di�erences are highlighted, and the resulting distinct
methods are compared. References to other iterative methods that have been used in
form �nding are also given. Section 5.4 continues this generic form-�nding method
by applying integrationmethods as solvers, which, apart fromNewton’s method, have
been popular in form �nding. Section 5.5 discusses viewing iterative and integration
methods as solvers, rather than unique categories of form-�nding methods. Section
5.6 compares the performance of distinct, existing methods as applied to a selection
of benchmark problems, before drawing conclusions in Section 5.7.

1�is chapter is partially based on Veenendaal & Block (2012b, 2018) and Bhooshan, Veenendaal & Block
(2014).
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5.1 Definition

Possible de�nitions of form �nding, or shape �nding, are:

“�nding an (optimal) shape of a [form-active structure] that is in (or
approximates) a state of static equilibrium,’ (Lewis 2003); or,

“a forward process in which parameters are explicitly/directly controlled
to �nd an ’optimal’ geometry of a structure which is in static equilibrium
with a design loading” (Adriaenssens et al. 2014b).

�e parameters mentioned will include mechanical ones such as forces, force densi-
ties, stresses or stress densities, discussed in the previous chapter.

De�nitions such as those above are broadly accepted and used, but have been criti-
cized in the past by Haber & Abel (1982) for not acknowledging the fact that in many
cases the stresses cannot be imposed and are, like the shape, also unknown. Instead,
they suggest calling the problem of form �nding the initial equilibrium problem.
Sensitive to this issue, recent works by Bletzinger et al. typically o�er variations of
the following, narrower de�nition of form �nding:

“�nding a shape of equilibrium of forces in a given boundary with
respect to a certain stress state.”

5.2 Categorization

A large number of form-�nding methods exist, with seminal methods originating
from the early 1970s, but most having been presented in the last two decades (Table
5.1). �ree particular methods are o�en listed as themain, or most common ones: the
sti�ness matrix method (SM) or nonlinear �nite element method (FEM), the force
density method (FDM), and dynamic relaxation (DR) (Lewis 2003, Li & Chan 2004).
�ese correspond to three main families or categories in which all methods can be
divided (Bletzinger 2011, Veenendaal & Block 2012b). �ese categories also derive
from a strong historical basis (Section 2.3). Lewis (2003) mentions another method,
by Buchholdt et al. (1968), described as “non-linear gradient vector methodologies,
[. . . ] based on the minimization of the total potential energy of the system.” �is
and other similar methods belong to a fourth category proposed here: minimization
methods.
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Figure 5.1: Early applications of computational form �nding to (a) prestressed cable nets
(Siev 1963), (b) loaded cable nets (Argyris et al. 1974), (c) gridshells (Gründig & Schek 1974),
(d) tensegrity (Motro 1984), (e) tensioned and (f) air-supported membrane structures (Haber

& Abel 1982) and (g) shells (Ramm &Mehlhorn 1991).

Sti�ness matrix methods are based on using the standard elastic and geometric
sti�ness matrices. �ese methods are among the oldest form-�nding methods, and
are adapted from structural analysis. �ey may either assume a relevant initial geom-
etry or use a �ctitious material sti�ness and/or the updated Lagrangian formulation.
If the real material sti�ness is used, we may view these methods simply as nonlinear
(large-displacement) �nite element methods.

Geometric sti�ness methods are material independent, with only a geometric sti�-
ness matrix. In several cases, starting with the force density method, the ratio of
force to length is a central parameter in the mathematics. Several later methods are
presented as generalizations, independent of element type, or extensions to surface
elements, o�en prescribing forces or stresses, rather than force densities.

Minimization methods emphasize the formulation of a functional or energy to be
minimized, using a Quasi-Newton or gradient descent solver, which avoids the need
to construct or invert a sti�ness matrix. Elastic energy may or may not be included.
Most of these are presented as being novel methods or extensions, but they may also
be regarded as speci�c solvers applied to the �rst two categories.

Dynamic equilibriummethods solve the problem of dynamic equilibrium to ar-
rive at a steady-state solution, equivalent to the solution of static equilibrium, by
using an integration scheme. Methods that use explicit integration schemes avoid
the need to construct and invert sti�ness matrices. Like minimization methods, we
may regard these as applying a speci�c iterative solver to the �rst two categories.
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�e existing category of sti�ness matrix methods is not well de�ned, with no consen-
sus on name and principal sources. �e term “sti�ness matrix methods”, used here,
was coined by Lewis (1989). Similar classi�cations of these methods are, in chrono-
logical order: nonlinear network computation (Schek 1974); computer erecting
(Linkwitz 1976); Newton-Raphson iteration (Barnes 1977); nonlinear displacement
analysis (Haber & Abel 1982); and, transient sti�ness method (Lewis 2003). Each of
these classi�cations refer to at least one reference by Haug et al., published in the
period 1970-1972, e.g. Haug & Powell (1972), and one by Argyris, Angelopoulos et al.,
published in the period 1970-1974, e.g. Argyris et al. (1974).

Some minimization methods include material deformations and minimize potential
energy (Bouzidi & Levan 2013, Buchholdt et al. 1968, Yousef et al. 2003a), while other
do not and minimize a functional that is not dependent on strain, o�en de�ned
geometrically (Arcaro & Klinka 2009, Miki & Kawaguchi 2010, Zhang & Tabarrok
1999).

Table 5.2 illustrates these categories of form-�nding methods, as they depend on the
inclusion of material law and use of a speci�c type of solver.

solver material and geometric geometric
Newton-Rhapson sti�ness matrix methods geometric sti�ness methods

(e.g. nonlinear FEM) (e.g. FDM)
Quasi-Newton minimization methods
Gradient descent
Integration dynamic equilibrium methods (e.g. DR)

Table 5.2: Categories of form-�nding methods, depending on inclusion of material law and
on the type of solver.

Figure 5.2 shows the form-�nding methods, as listed in Table 5.1, plotted against
time. Research on newer types of parameterization within these methods has been
included as well (Alic & Persson 2016, Philipp et al. 2014). �e early developments
clearly relate to projects that involved Frei Otto, with several key projects in Saudi
Arabia. �ese projects were part of a local construction boom, that resulted from the
1970s global energy crisis (Section 2.3). Many recent papers originate from China,
which in turn reference an even larger body of Chinese publications on existing
form-�nding methods and so�ware. China has seen large economic growth in recent
decades, and underwent a real estate bubble in the late 2000s, as part of a wider global
crisis. �is growth is illustrated by a marked increase in the number of membrane
structures built since 2002 (Lan & Liu 2006).
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Figure 5.2: Historical development and categorization of unconstrained form-�nding
methods. Type of contributions on the right. Arrows denote lineage and dotted lines denote
independent but related methods. Triangles and squares indicate �rst use of triangular or
quadrilateral elements. Red indicates publications regarding projects involving Frei Otto.

Blue indicates publications originating from China.

Table 5.3 shows three consecutive steps in any form-�nding process: �rst, the selection
of elements; second, the assembly of them into a single problem; and, third, the
decision for a solver with which to �nd the solution. New form-�nding methods
have introduced the use of an element or application of another solver, and may have
become associated with them. Table 5.3 identi�es these instances.
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It is important to realize that only the assembly of elements and the input for their
driving parameters (forces, force densities, stress, stress densities, and strains) de-
termine the unique problem and thus its solution. �e solver only determines how
accurate the approximate solution is, and how long it took to get there.

We may assemble a problem consisting of all these element types, which no longer
belongs to any speci�c form-�nding method. For this reason, this chapter presents a
generic form-�nding method instead, based on Table 5.3. �e topic of choosing a
solver is dealt with by presenting Newton’s method in Section 5.3 and integration
methods in Section 5.4. Rao (2009) provides more details on the iterative methods
used byminimizationmethods to solve nonlinear systems. Section 5.6 then compares
the performance of these solvers for several benchmark problems.

5.3 Static equilibriummethods

�e following generic form-�nding method describes the general approach taken by
sti�ness matrix (SM) and geometric sti�ness methods (GSM), and highlights any
di�erences between speci�c methods. �ese equations have already been discretized,
using the �nite elements described in Chapter 4.

Section 5.3.1 expresses static equilibrium, which is the end goal of any form-�nding
method. Deriving this equilibrium equation from the principles of virtual work and
minimum total potential energy has been shown in general by Haber & Abel (1982)
and Bletzinger & Ramm (1999) in the context of form �nding. Section 5.3.2 linearizes
the nonlinear system of equilibrium equations using a �rst-order Taylor expansion.
�e linearized system of equations contains derivatives of the internal forces, or
sti�ness matrices, which are given in Section 5.3.3 for both SM and GSM. Some
emphasis is placed on nonlinear geometric terms that are traditionally neglected, but
used by the more recent updated reference strategy (URS). �ese additional terms
are also provided for the speci�c cases of minimal surfaces (Singer 1995) and for the
surface stress density method (SSDM) (Maurin & Motro 1997). �e latter would
allow us to combine URS with SSDM. Section 5.3.4 solves the linearized system of
equations using Newton’s method and the convergence criteria from Section 5.3.7,
and provides references to alternative solvers. Without the nonlinear geometric
terms, the system of equations can be reduced in size, as shown in Section 5.3.8. A�er
�nding our solution, the reaction forces can be calculated according to Section 5.3.9.

198



5.3.1 Static equilibrium

A network is in a state of equilibrium if the sum of the external forces p and internal
forces at all nodes is zero. �e internal forces are expressed in terms of the vectors g
as a function of the coordinates x,

CTg(x) − p = 0. (5.1)

Linkwitz (1999) expresses the internal forces as a function of coordinate di�erences
u, which is equivalent, as from equation (4.9) we know that u = Cx. �e external
forces are grouped by interior and �xed nodes as in equation (4.8),

P = [
Pi
Pf

] or p = [
pi
pf

] , (5.2)

where Pi or pi are an [ni × 3]matrix and [3ni × 1] vector of external loads, and Pf or
pf are an [nf × 3]matrix and [3nf × 1] vector of reaction forces. Reducing the system
to the internal forces and external loads acting on the unknown coordinates xi, we
obtain

CTi g(x) − pi = 0. (5.3)

�e forces g(x) are vectors where the magnitudes are the m element forces f . �ese
can be related through the direction vectors, or direction cosines, UL−1, so that
g(x) = UL−1f . By substituting equation (4.14) and then (4.9) into (5.3), these forces
can be written as

g(x) = UL−1f = Uq = Qu = QCx (5.4)

so that static equilibrium is (Schek 1974),

CTi UL
−1f = CTi Uq = CTi Qu = CTi QCx = pi , (5.5)

whereQ = Q̄⊗ I andQ is the diagonal matrix belonging to q.
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Taylor series

A Taylor series is the representation of a function f (x) as an in�nite sum of
terms that are calculated from the values of the function’s derivatives around
the point of interest x0. �e �rst few terms can serve as an approximation of
that function, in order to solve an otherwise unsolvable problem.

f (x) = f (x0) +
f ′(x0)
1!

(x − x0) +
f ′′(x0)
2!

(x − x0)2 + . . . . (5.6)

�e higher-order terms become negligible, if ∆x = x − x0 is su�ciently small.
�e function is linearized if we only take a �rst-order approximation.

f (x) ≈ f (x0) +
f ′(x0)
1!

∆x . (5.7)

5.3.2 Linearization

�e system of equilibrium equations (5.1) is nonlinear and can be solved by lineariza-
tion. �e system is approximated by the �rst-order term of its Taylor expansion.

As a result, the system of equilibrium equations (5.1) is linearized, and we have a new
linear system with the changes in positions xi, ∆x, as its variables (Linkwitz 1999):

CTi g(x) − pi +CTi
∂g(x)
∂xi

∆x = 0 (5.8)

CTi
∂g(x)
∂xi

∆x = pi −CTi g(x) (5.9)

where ∂g(x)/∂xi is the Jacobian of the branch forces g with respect to the nodal
coordinates xi. By convention the resulting LHS matrix and RHS vector in equation
(5.9) are called the sti�ness matrix and the (residual) force vector,

K = CTi
∂g(x0)
∂xi

and r = pi −CTi g(x0), (5.10)
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respectively, arriving at the linear system

K∆x = r. (5.11)

5.3.3 Differentiation

In order to de�ne the sti�ness matrix K, we need to di�erentiate the Jacobian in the
linear system (5.9), which expresses how the internal forces change with respect to
the coordinate positions. Combining equation (5.4) with the partial derivative

∂u
∂xi

= Ci, (5.12)

and assuming for the moment that the stresses, and thus the force densities remain
constant, the geometric sti�ness or initial stressmatrix,

Kg,l = CTi
∂g(x)
∂xi

= CTi Q
∂u
∂xi

= CTi QCi . (5.13)

Haber & Abel (1982) also call this the updated Lagrangian geometric sti�ness matrix.
�ey refer to the updated Lagrangian formulation, in which variables correspond to
the current con�guration, which is then assumed to be the new updated reference
con�guration. �e assumption is made that the 2nd Piola-Kirchho� stresses in the
reference con�guration are prescribed, remain constant (Bletzinger & Ramm 1999),
and are equal to the actual Cauchy stresses (Haber & Abel 1982). Bletzinger & Ramm
(1999) add that this is true if the current and reference con�guration are identical.
�is occurs as we converge towards static equilibrium, as the changes ∆x and residual
forces r tend to zero. Setting the continuum mechanics aside, this simply means the
variables xi are always updated.

Without these assumptions, meaning that the force densities are not constants,

Kg = CTi
∂g(x)
∂xi

= CTi Q
∂u
∂xi

+CTi U
∂q
∂xi

= CTi QCi +CTi,bU
∂qb
∂xi

+CTi,tU
∂qt
∂xi

(5.14)

where we have split the derivatives for the line and the triangle elements. From Table
4.1, the force densities for these elements,
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q = [
qb
qt

] =
⎡⎢⎢⎢⎣

L−1f

AtH−Tσ

⎤⎥⎥⎥⎦
, (5.15)

and substituting the corresponding derivatives into equation (5.14), the sti�ness
matrix

Kg = CTi QCi −CTi,bUL−1Q̄bL−1UTCi,b

− AtCTi,tUH
−TσσT0H

−1UTCi,t +
t
4A
CTi,tUNU

∗TλTSCi,t

= Kg,l +Kg,nl . (5.16)

�is assembled geometric sti�ness matrix is valid for the entire network and in global
coordinates. Its constituent parts are equivalent to the element sti�ness matrices
provided for bars in global coordinates by Haug & Powell (1972) and Knudson &
Scordelis (1972), and for triangles in local coordinates by Spillers et al. (1992). �e
latter is non-symmetric.

For minimal surfaces with the corresponding force densities from Table 4.1 (Singer
1995), and for simplicity assuming constant force densities for the line elements,
equation (5.16) changes to

Kg = CTi QCi −
1
A
CTi,tUqtq

T
t U

TCi,t +
1
4A
CTi,tUNU

TCi,t , (5.17)

which is symmetric again.

�e surface stress density method (SSDM) produces a surface with a minimal
(weighted) sum of squared element areas (see also Section 4.2.6). With the cor-
responding force densities from Table 4.1, equation (5.16) simpli�es to

Kg = CTi QCi +
1
2
CTi,tUNU

TCi,t . (5.18)

While SSDM is an extension of FDM in this sense, the resulting system of equations is
no longer linear like FDM, as the force densities are now dependent on the geometry.
For the extended force density method, with extended force densities wb for the line
elements,
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Kg = CTi QCi + 8CTi,bUWbUTCi,b +
1
2
CTi,tUNU

TCi,t . (5.19)

�e nonlinear terms Kg,nl in equations (5.16) to (5.19) may cause the matrix Kg to
be singular, meaning it can no longer be inverted. �is is why early sti�ness matrix
methods relied on modi�ed Newton’s method (keeping the sti�ness matrix constant)
(Haug & Powell 1972) and applying incremental loads to maintain convergence
(Argyris et al. 1974), parallel to its use at the time in the �nite element method (Bathe
et al. 1975). Later sti�ness matrix methods and the geometric sti�ness methods
removed these terms entirely, using the linear part Kg,l only (Haber & Abel 1982,
Singer 1995, Tabarrok & Qin 1992).

Another option was proposed by Bletzinger & Ramm (1999) in the updated reference
strategy (URS), which starts in the same manner, but increasingly interpolates with
the original problem, using the parameter λh. �e resulting algorithm is more
accurate per iteration. �is process, called homotopymapping, calculates themodi�ed
sti�ness matrix as

Kmod = (1 − λh)Kg,l + λhKg (5.20)
= Kg,l + λhKg,nl (5.21)

where in equation (5.21) we have assumed that the reference con�guration is always
updated. In URS, this is not necessarily the case, resulting in separate initial and
reference con�gurations for the two terms in equation (5.20). �is means that the
residual forces r also need to be interpolated in the same way. Numerical studies did
not show an advantage for the latter approach (Veenendaal & Block 2012b).

An alternative to homotopy mapping was proposed by Dieringer et al. (2013) and
(Dieringer 2014) in the extended updated reference strategy (X-URS). In this ap-
proach the in-plane components of Kg,nl are removed by using a transformation
matrix T. �is matrix relates the global coordinates to local nodal coordinates that
are oriented perpendicularly to the surface, and zeroes out the in-plane components.
�en,

Kmod = Kg,l + TTKg,nlT, (5.22)

where T is explained in Veenendaal & Block (2018).
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For bar and membrane elements, which include material deformation, the force
densities

q = [
qb
qt

] =
⎡⎢⎢⎢⎣

L−1(f + EAe)
AtH−T(σ +Dε)

⎤⎥⎥⎥⎦
. (5.23)

�e additional terms include strains, and substituting the corresponding derivatives
from Table 4.1, into equation (5.14) the sti�ness matrix is

K = Kg,l +Kg,nl +Ke , (5.24)

where the elastic sti�ness matrix Ke can be split into its linear and nonlinear parts,
similar to Tabarrok & Qin (1992) and Nouri-Baranger (2002), so that

Ke = CTi,bU0L−10 L−1EAL−10 UT0Ci,b +CTi,b(U −U0)L−10 L−1EAL−10 (U −U0)TCi,b
+ AtCTi,tU0H

−TDH−1UT0Ci,t + AtCTi,t(U −U0)H−TDH−1(U −U0)TCi,t
= Ke,l +Ke,nl .

Some earlier references use only Cauchy strain for the bar elements (Barnes 1999,
Linkwitz 1999, Tabarrok & Qin 1992), while Pauletti & Pimenta (2008), for example,
consistently formulate Green strain for both bar and membrane elements. In the
former case, the elastic sti�ness matrix simpli�es to,

Ke = CTi,bUL−1L−10 EAL−1UTCi,b + AtCTi,tUH
−TDH−1UTCi,t , (5.25)

while in the latter,

Ke = CTi,bUL−10 L−1EAL−10 UTCi,b + AtCTi,tUH
−TDH−1UTCi,t . (5.26)

Table 5.3 summarizes this section, by showing the sti�ness terms that the geometric
sti�ness methods, the updated reference strategy and the sti�ness matrix methods
use. Of course, these methods can be mixed by combining line and triangle elements
(governed by prescribed forces, stresses, etc.) with bar and membrane elements
(governed by material deformation). �is is done by further subdividing the cor-
responding force densities, branch-node matrices and other related vectors and
matrices.
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Method Acronym Kg,l Kg,nl Ke,l Ke,nl
All geometric sti�ness methods, GSM ✓
except updated reference strategy URS/X-URS ✓ ✓*
All sti�ness matrix methods SM ✓ ✓** ✓ ✓***

Table 5.3: Sti�ness terms used by methods. *Partially used. **Used for line elements only.
***Used for triangle elements only.

5.3.4 Solution

�e system of equations (5.11), assuming it is nonlinear, can be solved using Newton’s
method (also known as Newton-Rhapson’s method).

Newton’s method

�e �rst-order Taylor approximation of function f (x) in Eq. (5.7) can be rewrit-
ten to Newton’s method, to �nd its root by iterative approximation, starting
from guess x0 and with ∆x = x1 − x0,

f (x0) +
f ′(x0)
1!

∆x = 0,

x1 = x0 −
f (x0)
f ′(x0)

and continuing,

x i+1 = x i −
f (x i)
f ′(x i)

, (5.27)

until a su�cient accuracy is achieved.

For one iteration, we obtain

xi, i+1 = xi, i +K−1r. (5.28)
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For the geometric sti�ness methods, and, to simplify notation, settingDi = CTi QCi
andDf = CTi QCf , we obtain (Schek 1974),

xi, i+1 = xi, i − (CTi QCi)−1(CTi QCx − pi),
xi, i+1 = xi, i −D−1i (Dixi, i +Dfxf − pi), (5.29)

which can be further simpli�ed and written as a �xed point iteration (Koohestani
2014)

xi, i+1 = D−1i (pi −Dfxf). (5.30)

�is leads to the identical expression for the linear force density method (FDM)
(Schek 1974), where the force densities are assumed to be prescribed constants. In
that case, the system of equations is in fact linear, requiring no further iteration, and
its solution is independent of the initial coordinates xi, i . �us, it is possible to �nd a
solution in equilibrium knowing only the force densities and coordinates of the �xed
nodes. Haber & Abel (1982) indeed remarked that although equation (5.30) “has the
form of a standard sti�ness equation [as in equation (5.28)], the unknowns are the
equilibrium nodal coordinates rather than nodal displacements”, so xi, i+1 rather than
∆x = xi, i+1 − xi, i .
To solve the linear system of equations (once, if force densities are constant, otherwise
at each iteration), particularly dealing with matrix inversion, Cholesky decompo-
sition has been used in this thesis. Haug & Powell (1972) also use a direct solver;
Gaussian elimination in their case. Iterative solvers have been used in the past in
form �nding, such as Jacobi (Haber & Abel 1982), Gauss-Seidel (Gründig & Schek
1974, Haber & Abel 1982, Linkwitz & Schek 1971) and the conjugate gradient (CG)
method (Bara� &Witkin 1998, Nouri-Baranger 2002, Singer 1995), but most sources
do not identify the speci�c solver used. Linkwitz & Schek (1971) refer to Gauss-Seidel
as “Nekrasov-Seidel”. Saad (2003) provides more details on these and other iterative
methods including preconditioners.
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5.3.5 Definition of force densities

For the linear force density method, the value of force densities is typically set to 1,
but it remains di�cult to anticipate the outcome for any set of given force densities.
Either trial and error or some form of optimization is needed to establish suitable,
�nal values. Block & Ochsendorf (2007), Block (2009) and Rippmann (2016) use
graphic statics as a means to de�ne force densities, in order to interactively design
compression/tension-only structures.

If forces or lengths are known in advance and can be prescribed, the force densities
can be automatically updated. A�er each iteration, the force densities for line ele-
ments are updated based on prescribed forces f (Maurin &Motro 1997, Sánchez et al.
2007, Zeng & Ye 2006),

qi+1 = F−1i Fqi = L−1i f , (5.31)

or prescribed lengths l (Veenendaal & Block 2012b, Zeng & Ye 2006),

qi+1 = L−1Liqi = L−1fi , (5.32)

though care has to be taken that these requirements allow for practical or feasible
results. Otherwise, a nonlinear force density method (Linkwitz & Veenendaal 2014,
Schek 1974) has to be used where constraints are introduced. �e resulting con-
strained minimization problems require other types of solvers such as least-squares
methods (Chapter 6).

5.3.6 Iterative methods

To solve the overall nonlinear system (when force densities are not constant), apart
from Newton’s method, explained in Section 5.3.4 and applied by most sources, alter-
native iterative solvers can be used. �ese are gradient descent and Quasi-Newton
methods, which avoid the need to construct or invert thematrixK. Examples in form
�nding are the use of steepest descent (Buchholdt et al. 1968, Miki & Kawaguchi 2011,
Yousef et al. 2003a), CG (Brakke 1992, Maurin & Motro 2001), and L-BFGS (Arcaro
& Klinka 2009). Rao (2009) provides more details on these iterative methods under
the name “indirect search methods”.
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Dynamic equilibrium methods that use explicit integration, can be counted among
these strategies, as they do not require a sti�ness matrix. �is is not true for methods
that use implicit integration (see Section 5.4).

5.3.7 Convergence criteria

To determine convergence, typical criteria are (Lewis 2003):

1. small values of residual forces (∣∣r∣∣ < ε) (absolute error);
2. small variations in the displacements between successive iterations (∣∣xi+1 −
xi ∣∣ < ε) (relative error); or the

3. maximum number of iterations; or,
4. maximum duration of computational time reached,

where ε is a prescribed tolerance. For practical implementations of sti�ness matrix
and geometric sti�ness methods, references suggest a �xed number of iterations,
roughly between four and nine (Pauletti & Pimenta 2008, Tabarrok & Qin 1992).

5.3.8 Reduced system

For geometric sti�ness matrix methods except the updated reference strategy, we
notice there is no need for a [3ni × 3ni] sti�ness matrix Kg,l. Instead, we can write
the sti�ness as an [ni × ni]matrix

Kg,l = C̄Ti Q̄C̄i, (5.33)

suggesting that computational e�ort for these methods is lower as the system of
equations to be solved is three times smaller. �e iteration (5.29) changes to

Xi, i+1 = Xi, i − (C̄Ti Q̄C̄)−1(C̄Ti Q̄C̄X − Pi), (5.34)

and (5.30) to

Xi, i+1 = D̄−1i (Pi − D̄fXf). (5.35)
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5.3.9 Reaction forces

Once the system is solved and an equilibrium con�guration is found, reaction forces
are typically needed for further design of the structure’s supports, connections and
foundations. �e reaction forces

pf = CTf QCixi +CTf QCfxf = CTf QCx, (5.36)

or in reduced form,

Pf = C̄Tf Q̄C̄X. (5.37)

5.4 Dynamic equilibriummethods

�is section is a continuation of the generic form-�nding method established in
5.3, which used Newton’s method to solve the system of equations. For dynamic
equilibrium methods, explicit and implicit integration schemes are used to solve
them instead.

Asmentioned, dynamic relaxation was amethod developed speci�cally for numerical
computation in structural analysis (Day 1965). In this pseudo-dynamic process, “static
equilibrium of a structure under a system of applied forces may be found by following
the movement of the structure from its initial, un-deformed and un-loaded, position
until all vibrations resulting from its subsequent loading have died out.” A related
method, particle-spring form �nding, was applied to computational hanging models
by Kilian & Ochsendorf (2005), based on cloth animation in computer graphics
Bara� &Witkin (1998). A full description in the context of form �nding was given by
Bhooshan et al. (2014). Implementations typically, but not necessarily, use implicit
integration. More recently, Zhao (2012) and Yang et al. (2014) proposed the vector
form intrinsic �nite element method (VFIFE) and the �nite particle method (FPM)
for form �nding respectively.

5.4.1 Dynamic equilibrium

In a dynamic system, equilibrium exists according to Newton’s Second Law,
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CTi g(x) +D
dxi
dt

− pi =M
d2xi
dt2
, (5.38)

where compared to static equilibrium (5.3) we have a term dependent on damping
matrixDwith velocities dxi/dt and a term dependent onmassmatrixMwith acceler-
ations d2xi/dt2. Assuming the damped motion arrives at a steady-state equilibrium,
velocities and accelerations become zero, both terms disappear, and we obtain static
equilibrium.

�e forces g(x) are de�ned as before in equation (5.4), as are the residuals forces
r from equation (5.10). We refer to the additional damping term, as the damping
forces

d = Ddxi
dt
. (5.39)

Second-order ordinary di�erential equation (ODE)

A second-order ODE has the form

y′′(t) = f (t, y, y′) (5.40)

which together with initial conditions

y(t0) = y0 and y′(t0) = y′0 (5.41)

forms an initial value problem (IVP). �is second-order ODE can be converted
to two �rst-order ODEs to simplify the problem, by de�ning a new variable
v = y′,

v′ = f (t, y, v) and v(t0) = y′0 ,
y′(t) = v and y(t0) = y0 .

(5.42)
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5.4.2 Simplification

Newton’s Second Law can be rewritten to a more familiar form, by expressing the
residual and damping forces in equation (5.38) as a function,

M
d2xi
dt2

= f(xi ,
dxi
dt

), (5.43)

which is a second-order di�erential equation.

We introduce velocities vi = dxi/dt, to form two �rst-order ODEs,

dvi
dt

=M−1f(xi , vi), (5.44)

dxi
dt

= vi , (5.45)

or in block form,

d
dt

( vixi
) = [ M

−1f(xi , vi)
vi

] , (5.46)

with initial conditions

vi(t0) =
dxi,0
dt

and xi(t0) = xi,0 . (5.47)

5.4.3 Explicit integration

�e system of �rst-order ODEs (5.46) can be solved with integration, the most basic
method being Euler’s method. Apart from Euler’s method, the following explicit
integration methods have been used in form �nding and are discussed in this section:
semi-explicit Euler (Bhooshan et al. 2014); Leapfrog (Barnes 1999); fourth-order
Runge-Kutta (Kilian &Ochsendorf 2005); and, Störmer-Verlet (Yu & Luo 2009, Zhao
2012). Yang et al. (2014) claim to use a method similar to Euler’s method, but in
fact use the Jacobi method, also given here. �e Jacobi method is not an integration
method and typically not applied to a system of nonlinear equations.
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Euler’s method for numerical integration

Numerical methods for ordinary di�erential equations (ODE) are methods used
to �nd numerical approximations to the solutions of ODEs. �eir use is also
known as numerical integration, although this term applies more speci�cally
to the computation of integrals. �e integral in question follows from the �rst-
order ODE,

y′(t) = f (t, y(t)) with y(t0) = y0 , (5.48)

is rewritten as an integral

y(t + h) = y(t) + ∫
t+h

t
y′(t)dt. (5.49)

�is is approximated with a �rst-order Taylor expansion,

y(t + h) ≈ y(t) + y′(t)
1!

h, (5.50)

which leads us to Euler’s method,

yn+1 = yn + h ⋅ f (tn , yn). (5.51)

To simplify notation, we de�ne vt ∶= v(t) and xt ∶= x(t). Furthermore, we use the
forward di�erence form ∆v = vi,t+∆t−vi,t and ∆x = xi,t+∆t−xi,t . �e explicit forward
Euler method applied to equation (5.46) approximates ∆v and ∆x as

( ∆v∆x ) = ∆t [ M
−1f(xi,t , vi,t)
vi,t

] , (5.52)

or, solving for the current velocity and position,

( vi,t+∆txi,t+∆t
) = [ vi,t + ∆tM

−1f(xi,t , vi,t)
xi,t + ∆tvi,t

] . (5.53)
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More commonly, the slightly di�erent, semi-explicit Euler method is used, where

( vi,t+∆txi,t+∆t
) = [ vi,t + ∆tM

−1f(xi,t , vi,t)
xi,t + ∆tvi,t+∆t

] . (5.54)

�e step size ∆t must be small enough to ensure stability when using this method.
Note that equation (5.54) is equivalent to equations for dynamic relaxation (DR). A
minor distinction between the two is that DR states the velocity in central di�erence
form ∆v = vi,t+∆t/2 − vi,t−∆t/2, rather than forward di�erence form, leading to
Leapfrog integration,

( vi,t+∆t/2xi,t+∆t
) = [ vi,t−∆t/2 + ∆tM

−1f(xi,t , vi,t)
xi,t + ∆tvi,t+∆t/2

] . (5.55)

Particle-spring systems have used the classic fourth-order Runge-Kutta method
(RK4),

( vi,t+∆txi,t+∆t
) =

⎡⎢⎢⎢⎢⎢⎢⎣

vi,t + ∆t
4
∑
i=1

b iki

xi,t + ∆tvi,t+∆t

⎤⎥⎥⎥⎥⎥⎥⎦

, (5.56)

where

b1k1 = 1
6M

−1f(xi,t , vi,t),
b2k2 = 1

3M
−1f(xi,t + ∆t 12vi,t , vi,t + ∆t 12k1),

b3k3 = 1
3M

−1f(xi,t + ∆t 12 (vi,t + ∆t
1
2k1),vi,t + ∆t

1
2k2),

b4k4 = 1
6M

−1f(xi,t + ∆t(vi,t + ∆t 12k2), vi,t + ∆tk3).

�e �nite particle method (FPM) for form �nding by Yang et al. (2014) uses an
unde�ned scheme without any damping, suggested to be similar to Euler’s method,

xi,t+1 − xi,t = −ωM−1r, (5.57)

where ω = ∆t
2 S is a step size. We continue to rewrite to
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xi,t+1 = xi,t − ωM−1(Dixi,t − pi)
= (I − ωM−1Di)xi,t + ωM−1pi
=M−1((1 − ω)M − ωR)xi,t + ωM−1pi
= (1 − ω)xi,t + ωM−1(pi −Rxi,t), (5.58)

where R = Di −M. �e resulting equation is known as a weighted Jacobi method, if
M is the diagonal ofDi. Yang et al. (2014) actually use physical masses forM, rather
than �ctitious mass derived directly from sti�nessDi. However, their factor ω is in
the order of only 10−2 to 10−3, while their densities are the same magnitude smaller
than their sti�nesses, meaning they cancel each other out.

�e Jacobi method is a standard stationary method to iteratively solve systems of
linear equations. It is in fact used for that purpose by Haber & Abel (1982). It is not
an integration method for dynamic problems, and has no velocities or equivalent
vectors, making FPM’s place among dynamic equilibrium methods debatable. On
the other hand, the original work on FPM (Yu & Luo 2009) as well as the vector
form intrinsic �nite element method (VFIFE) (Zhao 2012) both use Störmer-Verlet
integration, although they do not identify it as such:

xi,t+1 = 2xi,t − xi,t−1 + ∆t2M−1f(xi,t , vi,t). (5.59)

5.4.4 Mass

As mentioned, FPM, but also VFIFE use physical mass to de�ne a lumped diagonal
mass matrix M. However, since our interest lies not with the actual dynamic be-
haviour of the structure, the most optimal values with respect to convergence can be
chosen, even if they are �ctitious. Implementations of particle-spring systems (PS)
have used unity masses, meaningM = I. For dynamic relaxation (DR), the masses
correspond to the diagonal of the sti�ness matrix, which for the form �nding of
simple bar networks can be simpli�ed to (Veenendaal & Block 2012b):

m = ∆t
2

2
∣C̄Ti ∣q. (5.60)

Han & Lee (2003) de�ne the mass for a triangular membrane element as well.
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�e mass matrix M̄ is the diagonal matrix belonging to m, and M = M̄ ⊗ I. �is
de�nition corresponds to viewingM as a Jacobi preconditioner. �is is the simplest
type of preconditioner for solving linear systems of the formAx = b, which is de�ned
as the diagonal matrix of A.

5.4.5 Viscous damping

At this point, we have not yet de�ned the damping and time step. Day (1965)mentions
that the “main disadvantage of the method is the derivation of the time interval and
damping factor. �e easiest way to ascertain these quantities is by trial and error
[. . . ]”. Barnes (1988) relates the damping matrix to the mass matrix,

d = −Dvi,t = −
1
∆t

C′Mvi,t (5.61)

As a result,

( vi,t+∆txi,t+∆t
) = [ (1 − C′)vi,t + ∆tM−1r(xi,t)

xi,t + ∆tvi,t+∆t
] , (5.62)

or rewriting to conform to conventions in DR, such as damping constants A′ and B′,
and centred �nite di�erence form, ∆v = vi,t+∆t/2 − vi,t−∆t/2,

d = − 1
∆t

C′M
vi,t+∆t/2 + vi,t−∆t/2

2
, (5.63)

so that

( vi,t+∆t/2xi,t+∆t
) = [ A′vi,t−∆t/2 + B′∆tM−1r(xi,t)

xi,t + ∆tvi,t+∆t/2
] . (5.64)

where A′ = (1 − C′/2)/(1 + C′/2) and B′ = (1 + A′)/2.
Yu & Luo (2009) and Zhao (2012) also use viscous damping, the latter referring
explicitly to DR,

xi,t+1 = 2B′xi,t − A′xi,t−1 + B′∆t2M−1r(xi,t). (5.65)
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5.4.6 Kinetic damping

Instead of viscous damping, Barnes (1999) suggests an approach in which the algo-
rithm resets every time a peak in kinetic energy is detected, called kinetic damping.
�is maximum in kinetic energy corresponds to a minimum in potential energy.
Here, viscous damping factors are removed, or A′ = 1 and B′ = 1. �e kinetic energy

Ekin =
1
2
vTi Mvi . (5.66)

Once this value decreases, following a kinetic energy peak, velocities are set to zero,
vi,0 = 0. �us, for the �rst iteration and a�er each energy peak, or re-initialization,

vi,∆t/2 =
1
2
∆tM−1r(xi,0). (5.67)

A�er detecting an energy peak, coordinates will have been projected to time t + ∆t.
But, the true kinetic energy peak will have occurred at some earlier time t∗. To
determine the coordinates at time t∗, a quadratic function can be �tted through the
current (F) and two previous total kinetic energy values (D and E) in Figure 5.4.

Figure 5.4: Time of kinetic energy peak t∗ approximated by a quadratic function through
points D, E and F, with time di�erence δt∗ as a function of changes in energy G and H

(Adriaenssens et al. 2014a).
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It is convenient for computation to keep records of the di�erence between the previ-
ous and current kinetic energies G and H. We de�ne the elapsed time t∗ since the
energy peak in terms of these di�erences

δt∗ = ∆t E
E − D

= ∆t ⋅ q, (5.68)

where G = D − E and H = E − F.

Since coordinates have been updated using average velocities (at mid-points of time
intervals), they should be reset according to the same scheme. �us, using equations
(5.64) and (5.68),

xi,t∗ = xi,t+∆t − ∆tvi,t+∆t + δt∗vi,t−∆t
= xi,t+∆t − ∆t(1 + q)vi,t+∆t + q∆tM−1r(xi,t). (5.69)

An alternative is to assume that the peak occurs at t− ∆t2 and hence q =
1
2 in equation

(5.69).

5.4.7 Implicit integration

�euse of implicit rather than explicit integrationmethods in particle-spring systems
was presented by Bara� &Witkin (1998) and later adopted by Kilian & Ochsendorf
(2005) for application to structural form �nding of discrete networks. Although it
has not been previously used for form �nding of surfaces, it �nds widespread use for
cloth animation in computer graphics.

Backward Euler method

Whereas forward Euler method is de�ned at time tn ,

yn+1 = yn + h ⋅ f (tn , yn), (5.70)

backward Euler method is de�ned at time tn + 1

yn+1 = yn + h ⋅ f (tn + 1, yn + 1), (5.71)
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�e implicit backward Euler method approximates ∆v and ∆x by

( ∆v∆x ) = ∆t [ M
−1f(xi,t + ∆x, vi,t + ∆v)

vi,t + ∆v
] . (5.72a)

(5.72b)

Compared to the equation (5.52), derived with Euler’s method, f is now evaluated
at unknown coordinates and velocities. To resolve this, a Taylor series expansion is
applied and the �rst-order approximation is used:

f(xi,t + ∆x, vi,t + ∆v) = ft +
∂f
∂xi
∆x + ∂f

∂v
∆v, (5.73)

where the derivatives

∂f
∂xi

= K, ∂f
∂v

= −∆t−1C′M,. (5.74)

Substituting the Taylor approximation and equation (5.72b) into (5.72a), then reorder-
ing, yields the linear system

(I − ∆tM−1 ∂f
∂v

− ∆t2M−1 ∂f
∂xi

)∆v = ∆tM−1 (ft + ∆t
∂f
∂xi
vi,t) , (5.75)

where I is an [3n i × 3n i] identity matrix. Solving for ∆v and multiplying the entire
equation byM, we obtain

( vi,t+∆txi,t+∆t
) = [ vi,t + ∆t (M + C′I − ∆t2K)−1 (rt + ∆tKvi,t) ,

xi,t + ∆t (vi,t + ∆v)
] . (5.76)

5.4.8 Reduced system

As with GSM, using DR would allow us to reduce the size of the above systems of
equations by using equation (5.33), mass matrix M̄ and replacing [3n i × 1] vectors
x, v and r with [n i × 3]matrices X, V and R. However, in its above formulation, it
would be possible to combine DR with SM or URS, e�ectively solving their equations
using an integration method.

218



5.5 Discussion

Dynamic equilibrium andminimizationmethods have been presented here as unique
categories of form-�nding methods. However, Section 5.3.6 suggests that we might
perceive themmerely as solvers. �eywould then fall within the categories of sti�ness
matrix or geometric sti�ness methods, depending on whether material deformations
are included or not. Although no actual sti�ness (matrix) has to be de�ned, they all
require some kind of vector, whether they are velocities v, gradient descent directions
d or approximated gradients B−1r. Section 5.5.1 provides references that compare and
equate dynamic relaxation methods to the conjugate gradient method. Section 5.5.2
discusses the equivalence of problem formulations as they appear in minimization
methods versus those in sti�ness matrix or geometric sti�ness methods that use
Newton’s method.

5.5.1 Dynamic relaxation as an iterative solver

Dynamic equilibrium methods using explicit integration schemes can be considered
purely as iterative solvers for linear systems of the form Ax = b.
In particular, DR has been compared to CG in the past on several occassions. Felippa
(1996) claims that for linear problems, DR is not competitive with the best precondi-
tioned iterative and semi-iterative methods, such as CG, and argues the same is to be
expected for nonlinear problems. On the other hand, Felippa (1991) and Feng (2006)
demonstrate under what conditions preconditioned CG (PCG) and DR with viscous
damping are equivalent. �is is the case if the time-step and damping parameters are
automatically adjusted, and if a Jacobi preconditioner is used. Papadrakakis (1981)
shows examples of linear problems, where CG is superior to DR, but vice versa, if
automatic adaptation of step size and damping parameters is introduced. Typically,
in form-�nding applications, DR does not feature such adaptive time-stepping or
damping, but does include Jacobi preconditioning.

5.5.2 Minimizationmethods versus Newton’s method

References on minimization methods emphasize the minimization of some scalar
function, using a gradient descent or Quasi-Newton method. Although Maurin
& Motro (2001) describe their approach as a “mixed formulation”, others do not
explicitly relate their work to form-�nding methods that traditionally use Newton’s
method as a solver. Newton’s method is o�en described as a means to �nd the root of

219



a function. Here, we show that minimization and root �nding are equivalent means
of solving the form-�nding problem. Both can employ Newton’s method, and do so
in the same manner, although the measure of convergence may di�er. Switching to a
gradient descent or Quasi-Newton method then also produces the same result.

Table 5.4 summarizes the di�erent language thatmay be used. Either a scalar function
f (x) is minimized, meaning its stationary point is sought, such that its gradient
f ′(x) is zero, or the root of a vector function g(x) is sought, meaning it should be
equal to zero as well.

scalar vector matrix
function gradient Hessian

minimization minimize f (x) f ′(x) = 0 f ′′(x)
function Jacobian

root �nding �nd the root of g(x) = 0 g′(x)
1
2 x
TAx − xTb Ax − b = −r A

potential energy residual forces sti�ness

Table 5.4: Alternative mathematical views on the linearized form-�nding problem:
minimizing and �nding the stationary point of a scalar function f , or �nding the root of a

vector function g.

If the scalar function f (x) to be minimized includes material deformations, it is
referred to as potential energy (Bouzidi & Levan 2013, Yousef et al. 2003a); otherwise,
it is de�ned as a speci�c geometrical property or a functional (Arcaro & Klinka 2009,
Maurin &Motro 2001, Miki & Kawaguchi 2010, Singer 1995, Zhang & Tabarrok 1999).
�is scalar is o�en expressed as a (nonlinear) quadratic function, in the form shown
in Table 5.4. Its gradient f ′(x)must be zero, arriving at a system of equations of the
form Ax = b. Applying Newton’s method in the optimization means that for each
iteration,

xn+1 = xn −
f ′(xn)
f ′′(xn

).

Most methods describe a vector function g(x) that must be zero to obtain static
equilibrium, or in other words, for which we seek the root. Whether this function
includes material deformation or not, the vector is referred to as the residuals, or the
residual, unbalanced or out-of-balance forces. �is again leads to a systemof equations
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of the form Ax = b. In many cases, it is no longer thought of as minimizing the non-
zero potential energy or functional, but rather the norm of the residuals themselves,
rTr = (b−Ax)T(b−Ax), which approaches zero as it converges. Applying Newton’s
method to �nd the root of a function means that for each iteration,

xn+1 = xn −
g(xn)
g′(xn)

.

�is means that in either case, referring to Table 5.4, it follows that for each iteration,

xn+1 = xn +A−1r. (5.77)

Other solving methods, such as gradient descent or Quasi-Newton, or explicit in-
tegration methods, avoid forming and inverting the matrix A through a form of
approximation. Again, the �rst two types can be classi�ed as minimization methods,
and the third as dynamic equilibrium methods.

5.6 Comparison

Despite almost half a century of literature on numerical form-�nding methods,
thorough comparisons remain rare. Consequently, it is generally unclear to what
extent these methods di�er and in which cases one may be preferable over another.
Compounding this problem is the apparent divide between researchers focusing
on particular methods, in spite of their setting similar goals. Comparison is not
straightforward as a variety of nomenclatures, mathematical structuring and notation
is used. �e generic form-�nding method presented in this chapter, addresses these
issues and provides a framework for comparison (Veenendaal & Block 2011, 2012b,
2018).

5.6.1 Existing reviews

Reviews of form-�ndingmethods can be found (Barnes 1977, Basso&DelGrosso 2011,
Haber & Abel 1982, Lewis 2008, Linkwitz 1976, Meek & Xia 1999, Nouri-Baranger
2004, Tan 1989, Tibert & Pellegrino 2003). �ey di�er in scope, for example focusing
on tension structures or tensegrity, and many have become dated. Some do not

221



Type
C
riticism

R
eference

R
ebuttal

sti�nessm
atrix

m
ethods(SM

)
�
einclusion

ofm
aterialpropertiesisunnecessary,

com
putationally

costly,and
m
ay
lead

to
di�
culty

in
controlof(stable)convergence

Barnes(1977),H
aber&

Abel(1982),Lew
is(2008),

N
ouri-Baranger(2004)

�
ey
arerelevantifinform

ation
on
theinitial

geom
etry

isavailable.

geom
etric

sti�nessm
ethods(G

SM
)

Linearforcedensitiesproduceresultsthatarenot
constructionally

practicableand
can
serveonly

asa
prelim

inary
result.

Barnes(1977)
�
isdependson

how
thevaluesaredeterm

ined,or
w
hetherthey

arearbitrary.

Linearforcedensitiesaredependenton
m
esh
density

and
anisotropy.Additionaliterationsarenecessary

for
uniform

orgeodesicnetw
orksorshapedependent

loading.

Barnes(1977),H
aber&

Abel(1982),Lew
is(2008),

Tan
(1989)

�
isisinherentto

theseparticularapplicationsand
notadisadvantageofthem

ethod.

Linearforcedensitiesarenotm
eaningfulorintuitive

quantities,m
aking

itdi�
cultto

predicttheoutcom
e

foraprescribed
setofforcedensities.

H
aber&

Abel(1982),
N
ouri-Baranger(2004),
Tan

(1989)

M
ostm

ethodsfocuson
strategiesto

dealw
ith
this,

prescribing
forcesratherthan

forcedensities,or
determ

ining
them

by
som
eotherm

eans.
dynam

ic
equilibrium

m
ethods

Too
m
any
param

etersarerequired
to
controlstability

and
convergence.

N
ouri-Baranger(2004)

�
iscan

bereduced
to
asingledam

ping
param

eter
and

o�en
to
atrivialvalueforthetim

estep
∆
t=
1.

�
em
assand

dam
ping

param
etersarealso

�ctitious,
and

haveno
physicalrepresentation

and
m
aytherefore

notbem
eaningful.

N
ouri-Baranger(2004)

Fordynam
icrelaxation,them

assesarein
factthe

Jacobipreconditionerofthesti�nessm
atrix.�

e
dam

ping
isalso

determ
ined

based
on
thesti�nesses.

Table
5.5:C

om
m
on
criticism

sofvariousform
-�nding

m
ethods,and

author’srebuttal.

222



o�er critical comments and serve purely as non-comparative reviews (Basso &
Del Grosso 2011, Linkwitz 1976, Meek & Xia 1999). In other cases, they only serve as
an introduction for amethod put forward by the author(s), again without comparison
(Haber & Abel 1982, Lewis 2008, Nouri-Baranger 2004).

A summary of existing criticisms found in literature is provided in Table 5.5, by
category, including a rebuttal.

5.6.2 Existing comparisons

�ere are very few sources that compare the actual performance and results of
di�erent methods. Barnes (1977) compared the storage and operation requirements
of dynamic relaxation and sti�ness matrix methods per iteration and quotes required
numbers of iterations, concluding dynamic relaxation to be favourable in the case of
cable networks. �is was further demonstrated by Lewis (1989, 2003) who compared
several con�gurations of loaded cable nets (Figure 5.5). �e conclusion was that the
sti�ness matrix method did not converge for one of the examples and that dynamic
relaxation had lower total computational cost for examples with many degrees of
freedom.

For sti�ness matrix methods, Lewis (1989) mentions that they “show a strong ex-
ponential relationship [O(cn)] between the CPU time and the size of the problem
considered”, and “for a structure with 189 degrees of freedom, any realistic limits
of computer time would have been exceeded, unless steps to treat the numerical ill-
conditioning are taken”. While the comparison ignores the fact that sti�ness matrix
methods indeed deal with divergence through the use of modi�ed Newton’s method
and/or incremental loading, it does illustrate why such steps may be necessary.

dof ’s 3 6 12 36 45 189
SMTLF 1.00 (3) 1.57 (7) 1.00 (4) 2.20 (6) 4.49 (5) N/A
DRvis 1.46 (34) 1.00 (35) 1.62 (113) 1.00 (176) 1.00 (132) 1.00 (262)
DRkin 4.69 (46) 2.03 (39) 3.52 (148) 2.30 (263) 2.18 (139) 1.95 (329)
tmin [s] 0.13 0.30 0.33 3.62 3.50 23.70

Table 5.6: Normalized duration of form �nding and number of iterations in parentheses, best
result in bold
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Figure 5.5: Comparison of the e�ciency of methods. Adapted from (Lewis 1989).

Maurin & Motro (2001) compared the force density method for constant forces
and surface strain density method for minimal surfaces when using either Newton’s
method or nonlinear conjugate gradient (CG) methods on �ve problems (6, 243, 243,
483 and 450 dof ’s). �e computational performance was very similar, with Newton’s
method performing slightly better on average.
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5.6.3 Uniform force networks

To compare the performance of di�erent methods, a saddle shape with constant
forces f = 1 and �xed boundaries is sought (Figure 5.6). A network with constant
forces is equivalent to a minimal length net (Section 4.2.6).

Figure 5.6: Initial and resulting geometry of form �nding of saddle with 543 degrees of
freedom.

�e following ten methods were compared:

• sti�ness matrix method with
– total Lagrangian formulation (SMTLF) and,
– updated Lagrangian formulation (SMULF);

• geometric sti�ness method starting with
– force densities q = 1 (MFDF) or
– forces f = 1 (GSM);

• updated reference strategy with homotopy mapping (URSHM);
• dynamic relaxation with

– viscous damping (DRvis), and
– kinetic damping (DRkin); and,

• particle-spring systems with,
– viscous damping and RK4 (PSRK4,vis),
– spring damping and RK4 (PSRK4), and
– spring damping and backward Euler (PSBE).

For SM, the updated or total Langrangian formulation refer to updating the initial
geometry every iteration or not.
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dof ’s 75 183 339 543
SMTLF 1.25 (8) N/A N/A N/A
SMULF 1.44 (13) 4.22 (16) 6.26 (18) 9.93 (17)
MFDF 1.00 (14) 1.00 (16) 1.00 (18) 1.00 (17)
GSM 1.52 (16) 2.64 (15) 3.77 (14) 3.73 (13)
URSHM 1.38 (10) 3.13 (8) 4.31 (9) 5.36 (8)
DRvis 1.22 (8) 5.40 (34) 15.54 (63) 24.66 (96)
DRkin 1.41 (16) 5.19 (32) 10.36 (42) 13.16 (50)
PSRK4,vis 1.78 (17) 3.68 (22) 6.74 (28) 11.30 (50)
PSRK4 4.10 (39) 6.58 (39) 13.57 (60) 22.73 (67)
PSBE 6.31 (37) 11.30 (32) 14.44 (30) 20.33 (30)
tmin [s] 0.007 0.015 0.026 0.040
ΣL [m] 117.66 176.16 235.11 293.47

Table 5.7: Normalized duration of form �nding and number of iterations in parentheses, best
result in bold

For DR, for each element, the sti�ness EA = 0. For PS, the spring constant ks ,
damping factor kd and drag coe�cient b were all set to 0.5 (Veenendaal & Block
2012b). �e time step ∆t = 1, except for PSRK4 where ∆t = 0.2 and masses m = 1,
except PSRK4,vis wherem = 2. �e exceptions were made to avoid instability.
�e convergence criterium was a �xed sum of branch lengths, in order to objectively
compare the convergence of the methods for a result of equal geometric accuracy.
�e �xed sum of branch lengths was chosen such that at least one method had small
residual values ∥r∥ ≤ ε or normal strains ∥L−10 l− 1∥ ≤ ε, where tolerance ε = 10−3 and
L0 are the lengths in the reference con�guration.

Table 5.7 shows the time and iterations required to solve the problem, for increasing
degrees of freedom (dof ’s). Note that the resulting durations have been normalized
with respect to the minimum solving time tmin.

Figure 5.7 shows the computational time needed depending on the degrees of freedom,
plotted on a log-log scale. Appearing as lines, the required time for all methods
seems to exhibit polynomial growth O(nc) with c > 0, almost linear in some cases,
though the number of data points is limited.

For SM, the standard method did not converge for 183 dof ’s and above (see Table 5.7),
which agrees with Lewis (1989) (Section 5.6.2). E�ectively, this is the standard �nite
element method without any convergence control. A�er introducing an elasticity
EA = 1 for each element and an updated Lagragian formulation (ULF), the adapted
method SMULF showed polynomial growth O(nc) as well. Surprisingly, it is superior
to DR in this case and requires a roughly constant number of iterations. PS, with
either explicit RK4 or implicit backward Euler, did not show faster convergence
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Figure 5.7: Comparison of the e�ciency of methods (Veenendaal & Block 2012b).

for these small examples. From Figure 5.7 it can be seen that the latter does start
overtaking other dynamic methods at higher dof ’s. �is is consistent with Bara� &
Witkin (1998), who report implicit solvers to be faster than explicit ones, based on
examples of 7806 dof ’s or more.

Based on these results, MFDF is the fastest method for the form �nding of minimal-
length nets in this range of dof ’s. Its advantage is explained by the fact that it auto-
matically starts with one force density-controlled iteration before becoming force-
controlled (proceeding as GSM would a�er the �rst iteration). �e other methods
start directly from the prescribed forces, meaning they are dependent on the initial
geometry, in our case a �at net (Figure 5.6).

In terms of iterations, all methods that use sti�ness matrices exhibit nearly constant
iterations: SMULF, MFDF, GSM, URSHM and PSBE. URSHM requires the lowest
number of iterations.
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5.6.4 Minimal surfaces

�eprevious example consisted of line elements. To further compare the performance
of di�erent methods, a catenoid and a pseudo-Scherk’s �rst surface with uniform
stress and �xed boundaries is sought (Figures 5.8 and 5.9), modelled using triangle
elements. �e second example, pseudo-Scherk’s �rst surface is also referred to as a
box surface. An actual Scherk’s �rst surface cannot be bounded along straight edges,
hence the ‘pseudo’.

Figure 5.8: Initial and resulting geometry of form �nding of catenoid.

Figure 5.9: Initial and resulting geometry of form �nding of pseudo-Scherk’s �rst surface.

�e following seven methods were compared:

• sti�ness matrix method, using an updated Lagrangian formulation (SMULF);
• geometric sti�ness method (GSM);
• surface stress density method and its speci�c ’minimal surface approach’
(SSDMMSA);

• updated reference strategy with
– homotopy mapping (URSHM), and
– extended URS (X-URS); and,
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• dynamic relaxation with,
– viscous damping (DRvis), and
– kinetic damping (DRkin).

In addition, the following variations in solvers were compared with Newton’s method
for GSM and Leapfrog integration for DR:

• modi�ed Newton’s method, updated every two or ten iterations;
• conjugate gradient method (CG);
• low-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B);
• classic fourth-order Runge-Kutta method (RK4); and,
• backward Euler.

Two convergence criteria are used:

• the relative error in change in total surface area ∣(At+1 − At)/At ∣ < ε = 0.001;
or,

• the absolute error in the norm of residuals ∣∣r∣∣ < ε = 0.01.

�e former is less dependent on the density of the mesh, and therefore better to plot
performance of each method for increasing degrees of freedom. �e latter is best
suited to compare the accuracy and convergence of each method for a speci�c case.
For X-URS, ∣∣r∣∣ < ε = 0.001, as otherwise the relative convergence was not reached
yet (the absolute error decreases too fast, and no further data would be obtained
for comparison). �e method also starts with one GSM iteration for the pseudo-
Scherk’s �rst surface, as the sharp angles in the initial geometry caused problems.
For SSDMMSA the procedure is altered to initially converge such that ∣∣r∣∣ < ε = 0.1,
before continuing as GSM would (instead of a�er just 1 iteration).

For SM, the Young’s modulus E = 0.001 and Poisson’s ratio ν = 0.3. For URSHM,
λh, i=1,2,3. . . = 0, 0.5, 0.9, etc. For DR, time step ∆t = 1.0 and damping constant C′ =
0.5 except for RK4 (C′ = 1.0). Kinetic damping does not require any damping
constants. Both CG and L-BFGS-B solvers use the actual Jacobian matrix, and not
an approximation.
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Figure 5.10: Comparison of the e�ciency of methods for a catenoid. Criterion is relative
error in surface area.

�e results from Figure 5.10 show that in terms of computational time and relative
convergence, GSM performs the best, followed by SSDM.�e slowest are SM and
both types of URS. In terms of iterations, X-URS is the best, followed by URS. Again,
the required number of iterations for the geometric sti�ness methods is virtually
constant. Convergence for DR with kinetic damping is erratic.
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Figure 5.11: Comparison of the e�ciency of methods for a pseudo-Scherk’s �rst surface.
Criterion is relative error in surface area.

�e results from Figure 5.11 con�rmmany of the previous observations. �ere is even
less to no di�erence in the number of required iterations for SM and the geometric
sti�ness methods. �e behaviour of DR with kinetic damping is even more erratic.
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Figure 5.12: Comparison of solvers for CPU time [ms] and number of iterations against
increasing degrees of freedom for a catenoid. Criterion is relative error in surface area.

�e results from Figure 5.12 show that the nonlinear iterative solvers CG and L-
BFGS are unable to improve GSM’s performance, while modi�ed Newton’s method
is. Neither RK4 nor BE can improve the performance of DR’s standard Leapfrog
integration.
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Figure 5.13: Convergence of implemented methods, as well as di�erent integration schemes
for DR. Criterion is absolute error in norm of residual forces.

�e absolute error in the norm of residuals ∣∣r∣∣ < ε = 0.01 is used as the convergence
criterion to compare the accuracy of the methods. Figure 5.13 shows the convergence
for a catenoid with 1440 dof ’s.

Backward Euler and DRkin have higher accuracy than the other two explicit inte-
gration methods. In fact, the accuracy of BE is so improved that we have found
absolute convergence is reached sooner at higher dof ’s at well (2000+). Again, this is
consistent with Bara� &Witkin (1998), who report implicit solvers to be faster than
explicit ones, for examples of 7806 dof ’s or more.
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�e accuracy of all geometric sti�ness methods is superior than the dynamic ones,
with the second iteration revealing the improvements yielded by URSHM over GSM,
and in turn X-URS over URSHM.

5.7 Conclusions

�is chapter presents an overview of existing form-�nding methods for tension
structures. As a result, a generic form-�nding method is presented that encompasses
them. �is method is presented using consistent notation and language, and has
been implemented in a single computational framework. �is generic method and
its framework provide for three functions:

• a didactic instrument allowing better understanding of various methods and
how they relate;

• an objective comparison of performance, enabling more informed decisions
when choosing between methods, elements, solvers and so on; and,

• development of new and hybrid methods, by identifying opportunities, prevent-
ing needless repetition and allowing future research to be directed to entirely
new discoveries.

�e following general observations are made:

• early, seminal form-�nding methods were developed in the 1970s and were
applied to projects involving Frei Otto;

• manymore form-�ndingmethods have been presented, particularly in the past
three decades, o�en presented as generalizations or extensions of previously
existing methods;

• methods distinguish themselves from each other depending on

– whether material deformation is involved or not;
– what mechanical or geometrical objectives are de�ned (forces, stress, or
weighted p-norm of lengths and areas);

– element type and de�nition; and ,
– solver type (and how ill-conditioning is avoided); and
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• these methods can be divided into four categories based on the �rst and last
distinctions: sti�ness matrix methods, geometric sti�ness methods, dynamic
equilibrium methods and minimization methods.

By presenting methods in the same manner and carrying out an extensive review of
literature, the following speci�c observations were made:

• the references for SM are largely equivalent;

• the references for GSM are largely equivalent, except for

– element de�nitions that minimize some weighted p-norm of lengths or
areas (FDM, SSDM and EFDM); and

– methods that include nonlinear geometric sti�ness matrices while avoid-
ing ill-conditioning (URS, X-URS);

• GSM, SSDMandDR allow a system of equations to be solved that is three times
smaller than that of SM or URS, as the three coordinates can be decoupled;

• SSDM can be described in terms of traditional force densities along triangle
edges;

• SSDM’s and EFDM’s nonlinear geometric sti�ness matrices have been de�ned,
allowing their combination with URS’ homotopy mapping;

• integration methods have been formulated such that they can be combined
with SM, URS and SSDM, in the same way that DR can be considered a
combination of GSM with an integration scheme as a solver;

• integration and solving methods used in recent form-�nding methods de-
veloped in China have been identi�ed as existing ones (Störmer-Verlet and
Jacobi).

�rough the examples, some additional insights were possible:

• GSM is generally the most e�cient numerical method;

• X-URS and URS are generally the most accurate numerical methods;

• geometric sti�nessmethods require a constant number of iterations, consistent
with practical advice given by Tabarrok & Qin (1992) and Pauletti & Pimenta
(2008) to terminate at four to nine iterations;
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• integration schemes for dynamic equilibrium and iterative solvers are generally
unable to compete with Newton’s method applied to static equilibrium;

• the use of modi�ed Newton’s method seems to improve the speed of conver-
gence;

• Leapfrog integration with kinetic damping has comparable performance to
CG and L-BFGS-B; and,

• the advantages of starting with force densities (MFDF) do not carry over to
surfaces (SSDM) in terms of performance.

Ultimately, it is possible to formulate a single form-�nding problem that transcends
the four proposed categories. Imagine a problem that includes di�erent elements,
where some elements are governed by material deformation, while others have
various stress states or geometrical objectives. Now that this problem is de�ned, its
solution must be as well. �e remaining choice, the solver, will only determine how
fast we reach an approximate solution or how accurate that approximation is.

For normally sized problems (up to 104 dof ’s), andmodern computers, where storage
of such problems is no longer an issue, Newtonmethods performwell. �e advantage
of not having to construct or invert a sti�ness matrix (as in minimization and explicit
integration methods) has therefore become overrated. At low dof ’s of freedom, less
than 500, the performance of L-BFGS-B may o�er some improvement. We may
then conclude the decision for a solver to be a trivial one; an opinion not previously
held, but now a�orded to us by modern computing power. �en, the meaning of the
proposed categories is lost in the light of such a general problem and the arbitrary
means by which it is solved.

On the other hand, it is emphasized that the individual methods, while possibly
producing the same results, di�er in how they were originally derived and presented,
and as such, one may �nd them to be intuitive or meaningful in varying degrees.
Similarly, the overall proposed categorization can be helpful in initially structuring
and understanding form-�nding methods and their speci�c concepts and features.
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�ere is no discovery that one cannot claim for oneself by saying that
one had found the same thing some years previously; but if one does not
supply the evidence by citing the place where one has published it, this
assertion becomes pointless and serves only to do a disservice to the true
author of the discovery. [. . . ] .

—Adrien-Marie Legendre, 1809 (referring to Carl Fiedrich Gauss and
their dispute on who discovered the method of least squares)





CHAPTER SIX

Constrained form finding

�is chapter describes the application of the method of least squares to constrained
form �nding, and speci�cally the problem of �exible formworks for concrete shells as
it has been used for subsequent chapters1. �e term constrained refers to constraints
additional to those of static equilibrium and imposed boundary conditions, that
are inherent in form �nding. In such cases, a compromise has to be found between
form and forces. �e chapter is also intended to relate variations of the least-squares
method as they were presented by Linkwitz et al. in the 1970s, most of which were
published in German, as well as more recent publications, which are primarily based
on one such version by Schek (1974).

�e method of least squares was �rst published by Adrien-Marie Legendre (1752–
1833) in order to �t equations to a dataset, and developed further by Carl Friedrich
Gauss (1777–1855) for applications in statistics as well. �e name “least squares”
refers to the fact that the method minimizes a squared sum of variables, usually the
unknowns or the residuals. In essence, a least-squares method solves systems of
equations in which the number of equations and the number of variables is not equal,
so systems Ax = b, where the le�-hand side matrix A is no longer square.
Section 6.1 provides the main references regarding least-squares methods in form
�nding, and cites projects that were designed with them. Section 6.2 outlines the
basic least-squares problem and how it applies to �exible formworks. Sections 6.3
and 6.4 explain linear and nonlinear least squares, including their regularized or
damped form respectively. Section 6.5 describes application to problems that can
be de�ned in two di�erent sets of variables, speci�cally the force densities q and
coordinates x. �e possible addition of further constraints is brie�y discussed in
Section 6.6, before drawing conclusions in Section 6.7.

1�is chapter is partially based on Linkwitz & Veenendaal (2014).
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6.1 Least squares in form finding

In 1972, at the IASS Paci�c Symposium in Tokyo and Kyoto, three least-squares
methods for cable networks were independently presented: Linkwitz; Knudson &
Scordelis; and, Ohyama & Kawamata. �e latter two methods attempt to �nd forces
of a given geometry in equilibrium. �ey are restricted to vertical equilibrium and
orthogonal grids. Both discuss the additional prescription of forces, but point out that
this could result in an inability to �nd equilibrium. Haber & Abel (1982) generalized
their work to apply to arbitrary geometries and three-dimensional loads.

�e least-squares method by Linkwitz & Schek (1971) was developed for the Munich
Olympic stadium, in an attempt to reconcile inaccurate photogrammetric and force
measurements of Frei Otto’s physical hanging models, while constraining the initial
mesh to be square (Figures 2.41 and 2.42). �eir work was published in English by
Linkwitz (1972), Schek (1974) and Gründig & Schek (1974), though it is generally
remembered for another part of it: introducing the unconstrained, linear force
density method in the seminal paper by Schek (1974). At more than 600 citations
and counting, it is arguably the most signi�cant scienti�c paper in the �eld of form
�nding.

More recently, Van Mele & Block (2010, 2011) published a least-squares method to
determine the equilibrium of a given cable net under load, initially for the purpose
of developing a �exible formwork for anticlastic, thin concrete shells, and later by
Van Mele et al. (2014) to determine equilibrium for vaulted structures of given
geometry for static and other loads. Tamai (2013, 2015), Lachauer & Block (2014)
and Lachauer (2015) published least-squares methods to determine equilibrium for
discrete structures with both tension and compression of given geometry, subject to
bounds on the force densities.

Table 6.1 lists known projects that were optimized using a least-squares method.
Tamai (2015) describes an application to the 2015 Art Rotana Hotel in Bahrain,
United Arab Emirates, on behalf of contractor Waagner Biro, but the project was
awarded to another company.
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project year type constraints
Olympic Stadium, Munich 1972 cable net coordinates, force densities, un-

stressed lengths (Linkwitz et al.
1974)

Multihalle, Mannheim 1974 timber gridshell coordinates, force densities, lengths
(Gründig & Schek 1974)

Solemar-�erme, Bad Dürrheim 1987 timber gridshell coordinates, force densities
(Gründig 1988)

Table 6.1: List of projects, optimized using constrained form �nding based on least-squares
methods, with original references. Additional details found in Linkwitz & Veenendaal (2014)

6.2 Least squares for flexible formworks

Having established a form through freeform modelling, mathematical de�nition or
form �nding, the next problem is to establish the force distribution when the load
of concrete is applied to the �exible formwork. In other words, we wish to �nd the
required prestressing forces such that, under given loads of the wet concrete, the
resulting concrete shell takes the form of the target shape. �e initial shape, prior to
casting, is still an unknown at this point.

�e solution to this problem is to calculate the unknown force densitiesq as a function
of coordinates x of a known geometry and applied loads p. Referring to equation
(5.5), our system of equations is

CTi Uq = pi , (6.1)

or in reduced form,

C̄Ti Ūq = Pi , (6.2)

both of the general form Ax = b.
�e le� hand side matrices CTi U and C̄Ti Ū are of size [3ni ×m] and [ni ×m]. �is
means that if 3ni ≠ m or ni ≠ m, neither matrix is square, and neither can be inverted.
�e system has ni or 3ni equations and m unknowns. Depending on the speci�c
number of nodes and branches, these systems are either under- or overdetermined
systems (number of equations < or > number of unknowns respectively). An un-
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determined system has either no or in�nitely many solutions. An overdetermined
system typically has no solution, unless some of the equations are identical or linearly
dependent. �e method of (linear) least squares �nds the approximate solution of
such systems.

Table 6.2 summarizes di�erences in terminology and solutions for both types of
systems, as they appear in the following sections.

System Underdetermined Overdetermined
equations and unknowns m < n m > n
problem least-squares problem least-squares approximation

problem
solution none (inconsistent) or in-

�nitely many (consistent)
none (only approximate)

normal equations (ATA)x = ATp
Moore-Penrose pseudoinverse right inverse

AT(AAT)−1
le� inverse
(ATA)−1AT

minimizes qTq subject to Aq = p (p −Aq)T (p −Aq)
weighted Q−1AT(AW−1

1 A
T)−1 (ATW2A)−1ATW2

minimizes xTW1x subject to Aq = p (p −Aq)TW2 (p −Aq)
Gauss-Newton (nonlinear) JT(JJT)−1 (JTJ)−1JT
Tikhonov regularisation AT(AAT + δI)−1 (ATA + δI)−1AT
minimizes xTx + δ (p −Aq)T (p −Aq)
weighted W−1

1 A
T(AW−1

1 A
T +W−1

2 )−1 (ATW2A + δW1)−1ATW2
minimizes xTW1x + δ (p −Aq)TW2 (p −Aq)
Levenberg-Marquardt (nonlinear) JT(JJT + δI)−1 (JTJ + δI)−1JT

Table 6.2: Least-squares terminology for systems with more or less m equations than n
unknowns, in linear and nonlinear, and regularized form. Partially based on (Schek &

Eggensperger 1977).

�ematter is complicated by allowing only speci�c values of the force densities q,
for instance requiring that they are non-zero (tension only) or limited (prestress
and stress limits), leading to non-negative and bounded least squares. Furthermore,
additional constraints may be placed on the geometry, leading to nonlinear least
squares.

In this chapter, to simplify notationCTi Uq = CTi UL−1f = CTi QCix = pi will be written
as Aq = Bf = Dix = p.
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6.3 Ordinary least squares

�e system may be underdetermined or overdetermined, resulting in either a least-
squares problem or a least-squares approximation problem (Boyd & Vandenberghe
2004). �e former is a constrained problem that appears in the references on the
nonlinear force density and other constrained form-�nding methods. �e latter is
an unconstrained problem that is more common to literature on linear least squares.
In the context of constrained form �nding, Haber & Abel (1982) refer to the solution
to both problems as the underdetermined least squares method and overdetermined
least squares method.

Undetermined problems occur in the work of Linkwitz & Schek (1971) Linkwitz
(1972) and Gründig & Schek (1974), where both coordinates and forces are unknowns.
�e same is done in the context of this thesis (Veenendaal & Block 2014b, 2015). Schek
(1974) also adds that the number of constraints, i.e. equations, is usually less than the
number of unknowns.

Overdetermined problems feature in Knudson & Scordelis (1972), Ohyama & Kawa-
mata (1972) and Van Mele & Block (2010, 2011). In these cases, the number of
unknowns is limited because the structures are orthogonal and only one force or
force density along each cables is sought. Block & Lachauer (2014) identify possi-
ble sets of independent variables in an automated fashion, citing an approach by
Pellegrino & Calladine (1986).

6.3.1 Least-squares problem

�e nonlinear force density method has been presented in the form of minimization
problems, speci�cally simple equality-constrained quadratic programs:

min. qTW1q (6.3)
subject to Aq = p,

where p is o�en referred to as the observations in least squares, and in our case
generally is a vector of applied loads, andW1 is an optional weighting matrix.
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Method of Lagrange multipliers

Given an optimization problem

max. f (x) (6.4)
subject to g (x) = 0,

where f and g are di�erentiable with respect to x. By introducing a new variable
called a Lagrange multiplier λ, a Lagrange function, or Lagrangian, can be
de�ned as

Λ(x , λ) = f (x) ± λ ⋅ g (x), (6.5)

for which a stationary point is sought.

Applying the method of Lagrange multipliers, we introduce the Lagrangian

Λ(q, λ) = qTW1q − λT(Aq − p), (6.6)

which we solve by �nding the minimum of Λ, i.e. ∇Λ(q, λ) = 0. We take the partial
derivatives, or optimality conditions,

∂Λ
∂q

= 2qTW1 − λTA = 0, (6.7)

∂Λ
∂λ

= −(Aq − p) = 0, (6.8)

or in block matrix form,

[2W1 −AT
−A 0] [

q
λ] = [ 0−p] . (6.9)

From the �rst condition, we obtain
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q = 1
2
W−1
1 A

Tλ, (6.10)

which, substituted in the second condition, gives

λ = 2 (AW−1
1 A

T)−1 p, (6.11)

and, if the weightingW1 = I, back into the �rst condition results in:

q =W−1
1 A

T (AW−1
1 A

T)−1 p (6.12)

= AT (AAT)−1 p = A+p, (6.13)

where A+ is the so-called Moore-Penrose pseudoinverse.

To avoid computing the inverse of AAT directly, Gründig & Schek (1974) applied the
iterative conjugate gradient (CG) method to the normal equations (CGNE) (Saad
2003) for the Multihalle project. Similarly, Van Mele et al. (2014) applied a Cholesky
factorization and performed triangular substitutions (Nocedal & Wright 2000).

6.3.2 Least-squares approximation problem

�emethod of least squares is usually explained by the following premise: instead of
�nding the solution q∗ (which is not unique, or does not exist), we wish to �nd an
approximate value q such that Aq is the best approximation of p. �e errors e∗ of
our approximations are not known, since we do not know q∗, but can be related to
the residuals r, which we can compute:

e∗ = q∗ − q, (6.14)
Ae = Aq∗ −Aq

= p −Aq = r. (6.15)
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�e smaller the distances ∥p − Aq∥2, the better the approximation. Finding q in
this context is the least-squares problem, where “least squares” refers to the fact that
the overall solution minimizes the sum of the squares of the errors (or residuals),
in the results of every single equation in the system. A least-squares problem is an
optimization problem with no constraints and has an objective which is a sum of
squares,

min. (p −Aq)TW2 (p −Aq) , (6.16)

whereW2 is a weighting matrix. �e objective can be written out as function

f (q) = qTATW2Aq − 2pTWT
2Aq + pTp, (6.17)

which can be solved by �nding the minimum of f ,

∇ f (q) = 2ATW2Aq − 2ATW2p = 0. (6.18)

Rewriting, we obtain the solution of a least-squares problem, the normal equations:

(ATW2A)q = ATW2p. (6.19)

�e normal equations have the analytical solution, and if the weightingW2 = I,

q = (ATW2A)−1ATW2p (6.20)
= (ATA)−1ATp = A+p, (6.21)

similar to equation (6.13), but not identical as the Moore-Penrose pseudoinverse for
overdetermined systems is (ATA)−1AT instead of AT(AAT)−1 for underdetermined
systems (Schek & Eggensperger 1977).

�ese steps are sometimes omitted by simply stating that both sides of the linear
systemAq = p can bemultiplied byAT, thus obtaining a square le�-hand side normal
matrix ATA and a set of linear equations, the normal equations.

In the context of this thesis, the above solution already works for simple problems.
In cases where the geometry with coordinates x is viable, and loads p are modest
such that force densities remain in tension, no further work is needed.
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6.3.3 Regularization

Depending on the problem, it is possible to �nd approximations where both the
solution q and their residuals are small (Boyd & Vandenberghe 2004). Schek &
Eggensperger (1977) introduced the most common form of such regularized approxi-
mations, Tikhonov regularization, for application to the problem of cable nets. �e
objective function is

min. (p −Aq)TW2 (p −Aq) + qTW1q (6.22)

Tthe objective can be written out as function

f (q) = qTATW2Aq − 2pTW2Aq + pTW2p + qTW1q, (6.23)

which can be solved by �nding the minimum of f ,

∇ f (q) = 2ATW2Aq − 2ATWT
2 p + 2W1q = 0. (6.24)

where o�enW2 = I andW1 = δI.

�e analytical solution, for overdetermined systems, then is

q = (ATW2A +W1)
−1
ATW2p (6.25)

= (ATA + δI)−1 ATp. (6.26)

For underdetermined systems,

x =W−1
1 A

T (AW−1
1 A

T +W−1
2 )p (6.27)

= AT (AAT + δI)−1 p. (6.28)

If we wish to minimize distances to given values q0, the objective function is

min. (p −Aq)TW2 (p −Aq) + (q − q0)TW1 (q − q0) (6.29)
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�e objective can be written out as function

f (q) = qTATW2Aq − 2pTW2Aq + pTW2p + qTW1q + 2qT0Qq + qT0W1q0 (6.30)

which can be solved by �nding the minimum of f ,

∇ f (q) = 2ATW2Aq − 2ATWT
2 p + 2W1q − 2W1q0 = 0. (6.31)

we obtain the analytical solution

q∗ = (ATW2A +W1)
−1 (ATW2p +W1q0) (6.32)

= (ATA + δI)−1 (ATp + δq0) (6.33)

= q0 + (ATA + δI)−1 (AT(p −Aq0)) . (6.34)

6.4 Nonlinear least squares

If A in the system of equations Aq = p is itself a function of q, it needs to be
recomputed a�er �nding an initial solution. In other words, the problem is now a
nonlinear least-squares problem. Writing the system as a function

g(q) = Aq − p = 0, (6.35)

the �rst step is to then linearize the problem according to Newton-Raphson’s method

g(q) = g(q0) +
∂g(q)
∂q

∆q (6.36)

= Aq0 − p +
∂Aq
∂q
∆q = 0, (6.37)

assuming that p is not dependent on q. By introducing the �rst derivative, or Jacobian,
J, and residuals r, the problem is rewritten as the linearized system of equations
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∂Aq
∂q
∆q = p −Aq0

J∆q = r0.
(6.38)

We are still solving a linear system J∆q = r0 of the form Aq = p to which we can
apply normal equations, but instead of �nding q directly, we now have iterations, in
which q is updated using ∆q,

∆q = (JTJ)−1 JTr0 = J+r0
q = q0 + J+r0,

(6.39)

with respect to given values q0 (Schek & Eggensperger 1977)

∆q = (JTJ)−1 JT (r0 − J∆q0) . (6.40)

�is iterative procedure is commonly known as Gauss-Newton’s method, as applied
in most of the cited references. In regularised form it is

∆q = (JTJ + δW)−1 JTr0 , (6.41)

which is commonly known as Levenberg-Marquardt, as used by Schek&Eggensperger
(1977) and Van Mele & Block (2010, 2011). Regularizing with respect to given values
q0, leads to

∆q = (JTJ + δI)−1 (JTr0 + δ∆q0) . (6.42)

�e damping matrix or scaling matrixW is o�en an identity matrix I or the diagonal
matrix of JTJ.

�ere are other options to de�ne the damping parameter δ and damping matrixW.
For example, Schek (1974) mentions either a “diagonal weighting matrix” P−1 or
P−1R2 for “large changes in the force densities or in the shape, where R is a diagonal
matrix of the residuals. Schek & Eggensperger (1977) suggest either pR2, where some
guidance is given on determining p, or δ = prTr andW = I.
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Schek & Eggensperger (1977) and Linkwitz & Veenendaal (2014) distinguish between
strong and weak least squares, or hard and so� constraints, by observing that conver-
gence for the above equations may be very slow or that divergence may occur. In
such cases, the minimization towards q0 is relaxed by de�ning ∆q as qi+1 − qi rather
than qi+1 − q0.

6.5 Multivariate least squares

�e term “multivariate least squares” normally refers to solving systems of the form
AX = B, appearing in regression analysis.
Here, it is used to mean the least-squares problems where the le�-hand side of the
system of equations and any constraints can be written in forms corresponding to
di�erent sets of variables, Ax = Cy = b.
�is was relevant for the Olympic Park in Munich (Linkwitz 1972, Linkwitz & Schek
1971), and theMultihalle inMannheim (Gründig& Schek 1974), wheremeasurements
produced approximate values for both coordinates and forces. �e least-squares
method then was only intended to reconcile both measurements. In the later case of
the Solemar�erme in Bad Dürheim, an initial linear form-�nding step provided
this information, and the introduction of additional constraints required them to
deviate from this equilibrated geometry (Gründig 1988, Linkwitz & Veenendaal
2014). �e approach was used in this thesis in cases where ordinary least squares
were unable to immediately provide a viable solution (Veenendaal & Block 2014b).
In each of these cases, the systems of equations were underdetermined, hence the
following procedure.

�e objective function is

min. qTq + xTx (6.43)
subject to Aq = Dx = p.

�e corresponding Lagrangian is

Λ(q, x, λ) = qTq + xTx − λT(Aq +Dix − 2p) (6.44)
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which we solve by �nding the stationary point of Λ, i.e. ∇Λ(q, x, λ) = 0. �e
optimality conditions are

∂Λ
∂q

= 2qT − λTA = 0, (6.45)

∂Λ
∂x

= 2xT − λTDi = 0, (6.46)

∂Λ
∂λ

= −(Aq +Dix − 2p) = 0, (6.47)

or in block matrix form,

⎡⎢⎢⎢⎢⎢⎣

2I 0 −AT
0 2I −DTi

−A −Di 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

q
x
λ

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0
0

−2p

⎤⎥⎥⎥⎥⎥⎦
. (6.48)

From the �rst two conditions, we obtain

[qx] =
1
2
[A Di]

T
λ = 1
2
[A

T

DTi
] λ, (6.49)

which, substituted in the third condition, gives

λ = 2 ([A Di] [A Di]
T)

−1
p = 2 [AAT +DiDTi ]

−1
p, (6.50)

and back into the �rst condition results in:

[qx] = [A
T

DTi
] [AAT +DiDTi ]

−1
p = [A Di]

+
p. (6.51)

In nonlinear form, we start with the nonlinear function (Linkwitz & Schek 1971):

g(q, x) = Aq − p = Dx − p = 0, (6.52)

and then linearize it with respect to both variables,
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g(q, x) = g(q0 , x0) +
∂g(q, x)
∂q

∆q + ∂g(q, x)
∂x

∆x (6.53)

= Aq0 − p +
∂Aq
∂q
∆q + ∂Dx

∂x
∆x = 0. (6.54)

As before, we might introduce �rst derivatives, or Jacobians, Jx and Jy , but (Linkwitz
& Schek 1971) simplify the derivatives to ∂Aq

∂q = A and ∂Dx
∂x = Di (ignoring derivatives

of A and C with respect to q and x respectively) to obtain the following linearized
system of equations

∂Aq
∂q
∆q + ∂Dx

∂x
∆x = p −Aq0

A∆q +Di∆x = r0 ,
(6.55)

or in block form,

[A Di] [
∆q
∆x] = r0 , (6.56)

with the solution

[∆q∆x] = [A
T

DTi
] [AAT +DiDTi ]

−1
r0 = [A Di]

+
r0 . (6.57)

Linkwitz & Schek (1971) use a weighted form to either emphasize the importance of
the required force densities, or required coordinates.

6.6 Constrained least squares

Additional constraints may be imposed on the problem. In the context of a �exible
formwork, such constraints could be given forces along the perimeter to limit the
e�ort in prestressing, or given initial, unstressed lengths related to practical cutting
patterns. Ultimately, such constraints were not applied in this thesis, but the general
approach is provided for potential future work.
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In themultivariate case of both unknown force densities x and coordinates q, Sections
6.3 and 6.4 already mention how to impose given values. Additionally, Linkwitz
et al. (1974) and Gründig & Schek (1974) explain how to constrain initial and stressed
lengths respectively.

�e function g(q, x) representing static equilibrium is still linearized as in equation
(6.54), leading to the system of equations in equation (6.56). �en, any additional
constraint function gi(q, x) is also linearized with respect to force densities q and
coordinates x, and simply added to this same system.

Assuming here that the constraint function has a Jacobian G that is only a function
of x, and s is the residual of this function, then

[A Di
0 G ] [∆q∆x] = [r0s0

] , (6.58)

leading to the solution of the form (Linkwitz et al. 1974):

[∆q∆x] = [A
T 0
DTi GT] [

AAT +DiDTi DiGT

DiGT GGT ]
−1

[r0s0
] . (6.59)

For unknown force densities only, Schek (1974) explains constraints on initial and
stressed lengths as well as internal forces. Van Mele & Block (2010, 2011) describe
imposing coordinates, and Malerba et al. (2012) reaction forces. Instead of

gi(q, x) = 0, (6.60)

Schek (1974) writes any constraint as a function solely of the force densities, so that

g∗i (q) = g(x(q), q) = 0. (6.61)

Linearizing this with respect to force densities q and using the chain rule,

g∗i (q) = g∗i (q0) +
∂g∗i (q)
∂q

∆q (6.62)

= g∗i (q0) +
∂gi(q, x)

∂x
∂x
∂q
∆q + ∂gi(q, x)

∂q
∆q = 0, (6.63)
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where

∂x
∂q

= D−1i A, (6.64)

to obtain the linearized system of equations

[ ∂g i(q,x)∂x D−1i A +
∂g i(q,x)

∂q ]∆q = g∗i (q0)
G∆q = r0 .

(6.65)

Gründig& Schek (1974) preferred the former approach due to the large computational
cost of the latter, related to the inversion of matrixDi.

6.7 Conclusions

�is chapter presents an overview of least-squares methods for constrained form-
�nding problems. �ese methods can be directly applied to form-found results from
the preceding Chapter 5, meaning that for a prescribed, form-found geometry of a
network of linear and triangular �nite elements, the internal force distribution can
be found or approximated of that network subjected to an additional load. Ordinary,
nonlinear, and multivariate least squares have been applied in subsequent chapters to
the problem of �exible formworks. Constrained least squares have not been applied,
but can be relevant if constraints are placed on prestressing forces or geometry of
cutting patterns. It has been observed that the approach by Schek (1974) to use the
force densities as the only variables has not been compared to that of surrounding
literature where both coordinates and force densities are variables. Speci�cally,
Gründig & Schek (1974) criticizes the former approach due to inversion of a large
matrix requiring too much computer memory. On the other hand, four decades later,
Van Mele et al. (2014) are able to apply Cholesky decomposition without any issue.
On a wider note, this chapter may serve as a primer on existing work in this area,
which has thus far been mostly published in German.
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Part IV

Designmethodology
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I should have to so design buildings that they would not only be ap-
propriate to materials but design them so the machine that would have to
make them could make them surpassingly well.

— Frank Lloyd Wright, 1932





CHAPTER SEVEN

Design process

�is chapter sets out to present a design and engineering process required for an
anticlastic thin concrete shell, constructed on a �exible formwork, whilst taking into
account its fabrication constraints1. To fully realize the structural e�ciency of a
�exibly formed shell, it is crucial to both design an optimal shell within the project’s
constraints and to control the cable forces such that its form, despite the formwork’s
�exibility and the weight of the wet concrete, is exactly as required in the end. A
computational approach to realize this goal was developed and is explained here in
more detail. �e procedure consists of eight steps (Figure 7.1):

1. generating the shell geometry by
• establishing boundary conditions or domain,
• generating the surface (possible using form �nding; see Chapter 5), and
• determining the thickness;

2. verifying and (possibly) optimizing the concrete shell geometry;
3. patterning and �attening the formwork surface;
4. calculating loads due to weight of the fresh concrete (and some selfweight of
the fabric and shuttering);

5. determining cable forces or fabric stresses due to those loads (using least
squares; see Chapter 6);

6. materializing the cables and/or fabric, i.e. choosingmaterials and cross sections,
in order to determine the initial geometry;

7. determining cable forces or fabric stresses prior to loading; and
8. generating and analyzing the formwork frame.

1�is chapter is partially based on Veenendaal & Block (2014b, 2015).
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Figure 7.1: Design process for �exible formwork and resulting shell. Based on similar
�owcharts in Veenendaal & Block (2014b, 2015) and Veenendaal et al. (2015, 2017). * indicates

that �nite element analysis is required.
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At each step, the computational cost should be modest. �is would allow either a
real-time process where the designer can interactively evaluate many designs, or an
optimization in which a multitude of designs need to be generated. Some suggestions
are made throughout to minimize this cost. For the same reason, the design process
does not integrate all possible or required loads and load combinations. Rather, these
have to be checked a�erwards. �e formwork, for example, is only evaluated for
selfweight, and loads due to the applied concrete.

�is chapter is divided into eight sections corresponding to each step in the design
process, before drawing conclusions in the ninth and �nal section.

7.1 Geometry generation

�e establishment of a shell geometry can be done through:

• analytical expressions within a domain (Section 2.1);
• physical or numerical form �nding (Sections 2.2, 2.3 and Chapter 5);
• numerical �nite element analysis with large displacements; or,
• freeform design and modelling (Section 2.4).

�e �rst two approaches can be controlled easily to produce only anticlastic shapes.
Form �nding is particularly suited to generating feasible �exible formworks because,
in the absence of applied loads, the resulting shapes are guaranteed to be anticlastic,
but have a wider range than those produced by analytical expressions. �e resulting
mesh can also be the same geometry used for optimization and subsequent steps (see
also Chapter 12. �e last two approaches are only brie�y discussed, and are otherwise
outside the scope of this thesis.

Analytical expressions

Analytical expressions for shells usually de�ne the height, or vertical coordinate,
as a function of the horizontal coordinates. �ey might be valid within an in�nite
domain (perhaps locally asymptotic), and therefore, the shape of the shell has to
be bounded. �is may be a simple rectangular domain, meaning the horizontal
coordinates have lower and upper limits. �e boundaries can also be governed
by functions themselves, such as the unbuilt Táchira Club in Caracas, Venezuela
(Section 2.1.3) (Escrig & Sánchez 2005). Examples of anticlastic shapes are hyperbolic
paraboloids and hyperboloids.
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Figure 7.2: Hypars with varying values γ, and equal domain, span and rise at midspan.

Figure 7.2 shows a small, square hypar (dimensions w × l × h = 1.8×1.8×0.6 m). It
is de�ned by equations (11.1), (11.5) and (11.7), with plan proportion α = w/l = 1.0,
shallowness β = s/h = 3 and factor γ = a/b, such that a = γ ⋅b. Maintaining the same
domain and the same rise at midspan, while varying only γ = 1/2

√
2, 1/2, 1,

√
2, 2,

produces a range of hypars with di�erent edge curves. An even larger variety of shapes
is possible by establishing di�erent cutting planes (the domain) and inclinations, and
aggregating multiple hypars. Such strategies were expertly exploited by Candela in
his designs (Faber 1963, Schober 2015).

Form finding

Form �nding, whether physical or numerical, requires the de�nition of boundary
conditions in advance. �ese might be �xed points or edges. If the boundary con-
ditions are not entirely in one plane, and no external forces are introduced, the
resulting shape will always be anticlastic. In other words, by prescribing only internal
forces or stresses and not applying any loads, a wide variety of anticlastic shapes can
be generated. In the past, physical form �nding has required photogrammetry to
digitize the model, to then compute a more precise shape using least squares.

Figure 7.3 shows the ability of form�nding to produce a variety of anticlastic shapes for
given boundary conditions. �e force density and natural force densitymethods were
used to prescribe ratios of forces and stresses respectively. In the former case, equation
(5.31) was used to iteratively update the force densities, introduced in equation (4.14).
In the latter case, the orientation of the elements is iteratively changed to always
follow principal stresses, making the problem less dependent on the initial mesh.
�e natural force densities were de�ned in equation (4.33).
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Figure 7.3: Saddle shapes of varying ratio of either forces or stresses in two directions. �e
stresses are continuously de�ned along the directions of principal stress.

Large-displacement analysis

Geometry generation can also be done by keeping the �exible formwork, rather
than the resulting shell in mind. For a tensioned fabric roof, its surface is normally
created to have an as uniform stress state as possible and avoid any wrinkling by
tailoring appropriate cutting patterns. In fabric formworks, avoiding wrinkling is
not a necessary requirement. Instead of tailoring, one could allow for wrinkles and
maximize the use of large, �at sheets of fabrics, as was the case for projects at CAST
(Section 3.3.3).

Such shapes would be di�cult to �nd using numerical form �nding, since the stress
�eld has speci�c areas of uni- and bi-axial stress. Instead, large-displacement analysis
could be performed for prescribed initial patterns of �at fabric for given material
properties and boundary conditions.

Freeform design

Freeform design is an umbrella term for any kind of design process that does not
(initially) involve mathematical expressions or methods of form �nding. Such shapes
would have to be post-rationalized using some kind of functions approximating their
shape for subsequent modelling and analysis. Examples are describing a physical
model by translational surfaces, or meshing a NURBS-surface for �nite element
analysis.
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7.2 Geometry optimization

Figure 7.4: Various optimization results for a cylindrical shell by Lee & Hinton (2000a).

However the shape is initially generated, it can then be optimized further. �e
geometry can be optimized by changing the shape, thickness and topology of the
surface (Figure 7.4). �e latter, topology optimization, is outside the scope of this
thesis. Early applications to barrel vaults and conoidal shells can be found in Lee &
Hinton (2000b).

�e de�nition of what constitutes an “optimal” shell depends on the objectives. For
shell structures, typical objectives are maximizing sti�ness or buckling resistance
whilst minimizing weight or volume. Ramm et al. (1993) mention a fewmore possible
objectives and constraints in shell design.

�ese objectives may compete, requiring the designer to either convert some to
constraints with a desired value (e.g. a given volume) or decide on a trade-o�. Such a
compromise can be found through weighting factors (e.g. weighted least squares in
Section 6.5). One can also visually inspect a Pareto front, which plots the objectives
against each other, e�ectively revealing many di�erent weightings (e.g. Figure 12.19).

Pugnale et al. (2014) show, using a genetic algorithm, that optimizing a simple
shell for displacements has local optima, related to reversals of curvature. �is
suggests that a su�ciently constrained model that does not allow such reversals,
could be optimized using gradient-based approaches. In fact, several built shells by

264



Sasaki (2014) (Section 2.4) were optimized for strain energy, using a gradient-based
approach, called sensitivity analysis (Ebata et al. 2003, Sasaki 2005). Presumably, this
was appropriate if allowable deviations from the freeform architectural starting point
were limited to an extent that only a local optimum could be found.

Any optimization is complicated further by including multiple load cases as well
as material and geometric nonlinearities. �e nonlinearities in particular require
resource-intensive calculations. For this reason, Chapter 8 details the use of reduction
factors to include these nonlinearities at early design stages.

In addition, other objectives might be included to account for spatial, functional,
building physical and other goals. For this reason, genetic algorithms were used as a
standard approach in this thesis.

7.2.1 Shape optimization

�e optimization of shell structures requires a method of generating geometry in
which design variables allow for their variation. For analytical shapes, such as
hyperbolic paraboloids, one can vary the domain and coe�cients of their functions
as a shape generator. Although some of the thinnest known shell structures are hypars,
both Tomás &Martí (2010b) and Sasaki (2014) indicate that slight changes, deviating
from the hypar, can drastically improve their structural behaviour. �is implies that
conventional analytical shapes have their limits in structural optimization, and that
other parameterizations should be used. Design variables can be:

• coe�cients and other parameters of a function (e.g. Tomás &Martí (2010a,b) ;
• nodal coordinates of a mesh (e.g. Sasaki (2014)), possibly requiring some
method of �ltering (Bletzinger & Ramm 2014);

• control points or key points of a surface, or its de�ning curves (e.g. Pugnale
et al. (2014), Ramm et al. (1993), Sasaki (2014));

• weighting factors for a linear combination of shapes (e.g. Michalatos &Kaijima
(2014) using eigenmodes as shapes);

• external loads for form �nding; and/or,
• internal forces for form �nding.

Figure 7.5 shows two shapes that were optimized for strain energy, using either control
points or force densities as design variables, arriving at similar form. �e former
shape was used in Veenendaal & Block (2014b) to obtain the shape for two prototypes,
discussed in Chapter 10. �e latter approach, using form �nding as a shape generator
by varying internal forces, is adopted for Chapter 12.
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Figure 7.5: Saddle shapes with uniform thickness, and control points or internal force
densities as shape variables.

Bletzinger et al. (2005) already used form �nding as a shape generator for optimiza-
tion, speci�cally by varying the loads (distribution of selfweight) as the degrees
of freedom. Following the experimental work by Cauberg (2009) (Section 3.3.2),
Guldentops et al. (2009) and Tysmans et al. (2011) used form �nding to generate
�exibly formed, anticlastic shells, using the force density method and dynamic relax-
ation respectively. Both examples reduced the shape generation to a single degree
of freedom. In the former case, a ratio between a set of two force densities (corre-
sponding to the two orthogonal directions) was varied manually until the resulting
shape approximated that of a hyperboloid. In the latter, a �ctitious elastic sti�ness
(identical for all links) was iterated until a required height at midspan was reached.
Méndez Echenagucia & Block (2015) used thrust network analysis to generate funicu-
lar vaults, optimized for acoustic performance, with sets of force densities as variables
(see also Section 6.3). A similar compromise between the full or single degrees of
freedom was suggested in Veenendaal et al. (2015). Here, the design variables are
force densities at key locations of the shell, and some kind of interpolation between
these locations is used (Figure 12.9).

Figure 7.6 shows that varying a single ratio of force densities can produce a large
variety of anticlastic shapes. �e range of shapes is equivalent to that of varying
ratios of forces or stresses in Figure 7.3, but does not require iterative solving, as
explained in Section 5.3.4. It is therefore more suitable for parametric design or
shape generation, provided that there is no particular need to enforce certain forces
or stresses. However, Figure 7.6 also illustrates that any ratio of force densities will
produce a hypar if the network coincides with straight lines and in the absence of
external loads. �is means some care is necessary in generating the topology and
orientation of the network, which should follow expected lines of principal curvature.
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Figure 7.6: Saddle shapes of varying ratio of force densities, using the linear force density
method.

7.2.2 Shape and thickness optimization

Lee &Hinton (2000a) showed that optimizing shells for strain energy (sti�ness) with
only shape or thickness variablesmay produce shapeswith a lower buckling resistance.
Optimizing for both variables did lead to improvements in the buckling load, but they
ultimately concluded that the geometrically nonlinear buckling load must still be
calculated and veri�ed. Reitinger&Ramm(1995) compared the results ofmaximizing
sti�ness versus maximizing the load factor, with and without imperfections for shells
of given volume. �e load factor is the multiplier by which the applied load has
to be factored to obtain the load at which buckling occurs. �e buckling load for
the optimization with imperfections was considerably higher than those for the
other optimizations. �e resulting shell shape for both types of objectives was quite
di�erent, while the inclusion of imperfections mostly a�ected the thickness rather
than the shape. Both studies used a linear elastic material model, which would likely
overestimate the buckling load if a reduction factor is not included.

As design variables, Reitinger & Ramm (1995) used two thickness parameters, with
some kind of interpolation along the surface. Ramm et al. (1993) and Arnout et al.
(2012) used the Kresge Auditorium as a case study for shape and thickness optimiza-
tion, with the latter using free parameter optimization (each nodal thickness is a
variable). Chapter 12 also uses free parameterization.
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As these references all applied to synclastic shells, a small study was carried out for
an anticlastic shell with �xed boundaries, to verify some of the above conclusions.
Figure 7.7 shows several results when optimizing for strain energy or load factor, and
when including imperfections or not. �e shape variable c, determines the force
densities in both directions, 2−c and 2c . �e thickness variables, limited between 10
and 50 mm, are the thicknesses t1, t9 and t2, at the tips, centre and corners of the
shell respectively. Interpolation is done using quadratic Lagrangian polynomials
(like in a quadrilateral, quadratic �nite element), while keeping the total volume
constant.

Figure 7.7: Saddle shapes with variable thickness, optimized for (a) strain energy Ese or (b,c)
load factor λ, (a,b) without or (c) with imperfections. �e �rst buckling mode, on the right, is

taken as the shape imperfection.

variables performance
c t1 t9 t2 Ese λ λimp
[-] [mm] [mm] [mm] 103 ⋅[Nm] [-] [-]

hypar 0.00 15 15 15 42 169 159
uniform -0.22 15 15 15 36 132 126
variable -0.19 10 17 42 15 406 397
variable -0.09 10 13 50 17 440 372
variable -0.17 10 11 50 30 422 407

Table 7.1: Reference hypar and saddle shapes, optimized for shape and thickness variables, for
di�erent objectives indicated in bold.
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Table 7.1 shows that, compared to a hypar of uniform thickness, the load factor λ can
substantially be improved, more than a factor of 2.5. Without including thickness
variables, the load factor actually reduces when optimizing for strain energy, in
agreement with Lee & Hinton (2000a). �e load factor does not proportionally
increase when including imperfections, in agreement with Reitinger & Ramm (1995)
as well.

7.3 Patterning and flattening

�e next step, having settled on the required shape of the shell, is to map a cable net
or fabric onto the intrados (interior surface) of the shell. Figure 7.8 shows di�erent
patterns for either a fabric or a cable-net formwork.

Several criteria govern the design of the fabric patterning:

• the fabric seam lines should follow geodesics to minimize the amount of
cutting waste;

• theweave should alignwith the principal stresses, such that the cutting patterns
are not distorted by stress compensation for shear stresses;

• the strip width should:
– be as wide as possible, close to the maximum roll width, to reduce the
number of total strips; but,

– be as narrow as possible, such that the developable patterns can approxi-
mate the doubly curved surface.

�ese criteria largely coincide with those for tensioned fabric roofs, though the
alignment with principal stresses is of greater importance. �is is because stresses are
usually uniform or smoothly graded in fabric roofs, while in fabric formworks, they
are governed by the distribution of the concrete loads leading to greater variation.

Several criteria govern the design of the cable-net topology:

• the valency of the cable net should ideally be even to allow continuous cables,
simplifying details within the net;

• continuous cables should:
– terminate at the boundaries to allow for more convenient prestressing
(and thus control) throughout, rather than terminate or loop within the
mesh;
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– follow principal curvatures of the surface to reduce the amount of pre-
stressing required, as the cables’ load capacity is proportional to prestress
and curvature; and,

– have as low geodesic curvature as possible for two reasons:
* to double as seam lines for secondary fabric strips (thus reducing
material waste); and,

* to reduce out-of-plane forces, and corresponding shear in the cross
clamps at the nodes;

• the density of the mesh should:
– be �ne enough such that the demands on the secondary fabric or shut-
tering are low (in terms of strength, prestressing and patterning require-
ments); and,

– be coarse enough, such that the total length of cable, the number of
intersections and the amount of prestressing work (thus material and
labour cost) are reduced.

If all cables follow geodesics, their principal normals coincide with the surface
normals. �is means that without any external load, there is no out-of-plane force,
and no theoretical need for cross clamps to connect intersecting cables. Any out-of-
plane force, produced by the subsequent applied concrete load, is precisely the force
that the cross clamps need to resist, particularly in steep areas where the vertical load
vector does not coincide with the normals. Note that the wire formworks in Sections
3.7.3 and 3.7.4 roughly followed geodesics, were relatively shallow, and therefore did
not require any cross clamps, at most some simple ties at regular intervals.

Given these above criteria, a starting point would be a quadrilateral mesh, or patches
of such meshes, roughly oriented along lines of principal curvature. �e mesh that
was produced during form �nding and/or shape optimization, could already have
been generated with some or all of these criteria in mind (as in Chapter 12). Geodesic
lines can be plotted between the end points of continuous lines in the mesh to update
the mesh, or as suggested by Barnes (1999), found during the initial form �nding.
�en, the end points can be shi�ed such that the distribution ofmesh widths becomes
more uniform (Figure 7.9). �e patterns in Figure 7.8 were generated in this manner.

�e fabric surface is then unrolled, using a geometric, area-preserving approach,
by simple subdivision, triangulation and �attening. �e degree of subdivision is
increased until the di�erence between surface areas of the �attened pattern and the
original doubly curved surface are within a certain tolerance (Figure 7.8). For a fabric
formwork, the cutting patterns must be compensated to account for the amount of
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Figure 7.8: Saddle shapes with fabric or cable-net cutting patterns, (a) along straight line
generators, (b) along 45 degrees, (c) along geodesics and (d) coarser version used for the

prototype in Chapter 10.

Figure 7.9:Mesh generated as orthogonal, quadrilateral mesh, redrawn along geodesics and
optimized for average mesh width.

stretch, which can be done once a material model for the fabric is chosen (Section
7.6). Moncrief & Topping (1990) and Bletzinger et al. (2009) discuss more precise
constrained and mechanical patterning methods used to de�ne the fabric strips, to
develop them and compensate them for stresses.
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For a hybrid cable-net and fabric formwork, the fabric strips can be aligned along the
arching cables (rather than the hanging ones). In this way, the strips can simply be
placed over the cable net without the possibility of sliding down. Stress compensation
is not necessary, if the fabric is simply laid onto the cable net and allowed to sag.

If sagging is not preferred, then no amount of prestressing of the fabric itself will
entirely avoid this. Instead, an additional �nishing layer is required a�er removing
the formwork, or concrete has to be applied from both sides (see Section 3.7.3).
Alternatively, the fabric can be replaced or in�lled by another material that can be
shaped, such as foam (see Section 3.7.4).

7.4 Target loads

To determine the forces in the formwork surface, the applied concrete loads are
approximated by point loads, applied to vertices of a mesh. �e mesh represents the
cable net or fabric surface. �e vertices may coincide with the actual nodes in the
net (as in Chapter 12). Each load is assumed to correspond to the tributary area of
its associated vertex. �e tributary areas are based on the dual diagram of the mesh.
Each face of the dual is planarized, and then extruded by the required thickness of
the shell (Figure 7.10).

For a cable-net and fabric formwork, the fabric will sag between the cables, locally
increasing the shell’s thickness. �is additional concrete can be considered non-
structural, but adds to the loads on the formwork. Modelling the sag requires further
re�nement of the mesh, and, since the cutting patterns and their orientations are
given, some form of large-displacement �nite element analysis. �is can be compu-
tationally expensive, especially for parametric design or in an optimization process.
Figure 7.10 shows such a model, in which an attempt was made to reduce compu-
tational cost using a simpli�ed spring mesh (Van Gelder 1998) instead of constant
strain triangle elements. Ultimately, it was decided to avoid this step entirely, by
simply adding an additional weight to the target loads, as an average representation
of the weight due to sagging. �is was a reasonable assumption due to the relatively
uniform spacing of the cables.
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Figure 7.10: Saddle surface with fabric sagging between cables due to the applied concrete,
dual diagram of the cable network and approximate target loads per cable node.

7.5 Least squares fitting

For the given formwork surface geometry and applied concrete loads, a least squares
method, or best-�t optimization is then used to �nd the unknown internal forces
or stresses (Chapter 6). If an exact answer cannot be found, the best possible �t
is accepted. If the geometry deviates too much, the original analysis has to verify
whether the performance of the shell has changed too much. In Section 12.2.6 the
�tting itself was an additional objective in the overall optimization. �is was done
to maintain a computationally less costly bounded linear least squares calculation,
rather than use nonlinear least squares. �e underlying assumption was that a more
reasonable �t produced by linear least squares would already give an indication of
geometries that are more easily constructed using a �exible formwork.

Figure 7.11 shows forces under concrete load for the same surface, but with di�er-
ent cable-net geometries, to validate some of the criteria in Section 7.3. �ey are
an orthogonal net, one based on the o�set wire method (Section 3.7.3), and one
approximately aligning with principal curvatures, with the latter revealing the lowest
required forces, to generate the same shape. �e orthogonal net would have in�nite
forces on a hypar, but the optimized shape (Figure 7.5) has a slight curvature, allowing
us to �nd a solution.

For a fabric formwork, the stresses can be calculated immediately, once the local
orientation of the elements is mapped from the geometrically �attened patterns
to those on the three-dimensional surface. �e mesh has to be re�ned in order to
produce a reasonable resolution (Figure 7.12). However, triangle elements along
the boundaries that have two �xed vertices produced illogical stress results. �is is
because the triangle edge between those �xed vertices can have an arbitrary natural
force density. Furthermore, the results were found to be highly sensitive to the quality
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Figure 7.11: Saddle shapes with forces a�er casting from best-�t optimization, for (a)
orthogonal, (b) o�set, and (c) principal curvatures net.

and uniformity of the particular mesh. As a result, the fabric stresses in Chapter
11 are derived from a discrete network of elements, using the cable-net analogy
(Gründig et al. 2000, Ströbel 1995). �is approach is substantially faster, suitable for
early design stages, and is fairly common practice in the engineering of tensioned
membrane roofs.

Figure 7.12: Saddle with fabric stresses a�er casting and compensated cutting patterns for
construction.
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7.6 Materialization

Having determined the forces or stresses a�er casting, we wish to know the forces
or stresses prior to casting in order to construct and prestress our formwork. �is
is only possible by relating both states, before and a�er casting, through material
deformation. By choosing material and section properties, it is possible to calculate
the initial geometry of the cables and fabric, allowing us to compensate for the
prestress.

From equations (4.14) and (4.20), we know that for a linear elastic cable

q = L−1f = EA(l−10 − l−1). (7.1)

A�er choosing a material and cross-section, with an axial sti�ness EA, the initial
lengths l0 can directly be computed from the forces f and lengths l in the �nal state
(Linkwitz 1999):

l0 = (I + (EA)−1F)−1 l, (7.2)

where I is an identity matrix of size m, and EA and F are diagonal matrices of all
sti�nesses EA and the forces f respectively.

For an isotropic, linear elastic fabric, the constitutive model is given by equation
(4.48) with (4.50). �e strain is given by equation (4.52) with (4.53). Rewriting
equation (4.53), the squared initial lengths are

L0l0 = Ll −
2
A
HD−1HTq, (7.3)

and by taking the square root, we have found the initial lengths l0, which allow us to
calculate the compensated cutting patterns and also deform to the prestressed state.

Galliot & Luchsinger (2009) discuss symmetric and non-symmetric orthotropic
constitutivematrices that aremore o�en used for the analysis of tensionedmembrane
structures. �ey also present their own orthotropic constitutive matrix, which is
nonlinear with respect to the ratio of warp and we� stresses. Notice that any material
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model, no matter how complicated, can be introduced instead of the orthotropic
model to compute the initial lengths, at very little cost. �e real computational cost
occurs in the next step if other loading states, such as the prestressed, initial state,
are calculated.

7.7 Prestress calculation and compensation

From the �nal state geometry, and the prescribed material model and resulting
initial lengths, it is now possible to compute the intermediate geometry and forces or
stresses prior to casting. �is is the actual geometry that is to be constructed. In this
situation, the fresh concrete has not been applied yet, so assuming the selfweight of
the formwork to be negligible compared to the prestresses, we simply remove the
loads when computing the residual forces and attempt to �nd a new equilibrium
shape. �is requires �nite element analysis that allows for the prescription of initial
geometry or corresponding strains. Figure 7.13 shows that the range of forces has
decreased for the unloaded, initial state. At this point, the cables can be dimensioned.

Figure 7.13: Saddle shape with cable forces a�er and before casting. �e former state is also
shown in Figure 7.11. �e range of prestresses is smaller in the latter state.
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For a fabric, the patterns can be compensated for the stress (Figure 7.12). At this
point, discrepancies occur between the geometry and orientation of the elements
in the �attened two-dimensional and the three-dimensional states, and Bletzinger
et al. (2009) discuss the resulting deviations between the actual stresses and those
prescribed during form �nding. �ese deviations are neglected in engineering prac-
tice for tensioned membrane roofs, but Bletzinger et al. (2009) propose to iteratively
couple form �nding and patterning in a manner that reduces these deviations.

7.8 External frame

Finally, the external frame can be designed and analyzed by applying the reaction
forces from the least-squares �tting and the prestress calculation as two load cases.
�ese correspond to the formwork system before and a�er applying concrete. �e
reaction forces can be calculated according to equation (5.36) for any given set of
force densities q and nodal coordinates x that describe a network in equilibrium.

�e entire process assumes that the concrete can be applied relatively quickly and
uniformly, otherwise intermediate states should be checked including the e�ect on
the resulting shape. It would have been possible to include the frame in the earlier
form-�nding process, but this is outside the scope of the present thesis. Such a
combination of form �nding and structural analysis is not unusual in the design of
tensioned membrane roofs in which the fabric is not materialized yet, but steelwork
at the boundaries is.

Figure 7.14: External frame design and construction of prototype (see Chapter 10).
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7.9 Conclusions

�is chapter has outlined a computational design process to develop a thin concrete
shell structure, and to compute the stress states and cutting patterns of a �exible
fabric and/or cable-net formwork for that shell geometry and corresponding concrete
weight. �e process includes form �nding for shape generation (Chapter 5), least
squares to determine forces under load of the concrete (Chapter 6), and simpli�ed
reduction factors to include geometric and material nonlinearities during shape
optimization (to be discussed in Chapter 8). �e initial mesh geometry from shape
generation can, if adhering to proposed design criteria for the formwork, be main-
tained (possibly subdivided) throughout the entire process, all the way to producing
the �nal reaction forces on the external frame. �is simpli�es the amount of data
that is produced and transferred while avoiding reparameterization. �is concept is
applied to Chapters 11 and 12.

Speci�c contributions are :

• the formulation of design criteria for the fabric and/or cable-net topology and
geometry;

• the concept of calculating prestresses in the �nal state, andmaterializing before
�nally calculating prestresses prior to casting; and,

• the observation that conclusions drawn by Lee&Hinton (2000a) and Reitinger
& Ramm (1995) for synclastic shells apply to anticlastic ones as well:

– without including thickness variables the load factor λ can actually re-
duce when optimizing for strain energy, and

– when including imperfections and optimizing for the load factor λimp,
the corresponding load factor without imperfections λ can actually re-
duce, meaning the two do not necessarily correlate.
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Structural engineering is the art of moulding materials we do not
wholly understand into shapes we cannot fully analyse, so as to withstand
forces we cannot really assess, in such a way that the community at large
has no reason to suspect the extent of our ignorance.

—Alexander Robert Dykes, 1976, paraphrasing Brown (1967)





CHAPTER EIGHT

Structural engineering

Shell structures have been de�ned as “constructed systems described by thin, three-
dimensional, curved surfaces, in which one dimension is signi�cantly smaller com-
pared to the other two” (Adriaenssens et al. 2014b). Structural shells exhibit mem-
brane behaviour when they resist (out-of-plane) loading through in-plane stresses
rather than bending stresses. Such membrane action is achieved through su�cient
curvature. �ese curvatures can be monoclastic (e.g. barrel vaults), synclastic (e.g.
domes), anticlastic (e.g. hypars), or a combination thereof. In pure membrane ac-
tion, the entire section of the shell is used. �is makes for e�cient use of material,
particularly if the shape and thickness of the curved shell is optimized to maximize
this behaviour everywhere.

However, Bletzinger &Ramm (2014) warn that optimized systems become “extremely
sensitive to a change of these parameters or even other circumstances not considered.
Optimization o�en is a generator of instabilities and imperfection sensitivities.” �e
structural rigidity of shells in fact prevent them from visibly deforming, giving little
warning prior to sudden buckling failure. For this reason, Ramm & Schunk (2002)
have referred to shells as the “prima donna” of all structures.

In light of these sensitivities, the International Association for Shells and Spatial
Structures (IASS) issued recommendations for the structural analysis of shells (Med-
wadowski et al. 1979), here referred to as “IASS 1979”. �is chapter lays out the
procedure from IASS 1979, mostly based on surrounding literature and relevant
building codes, as the recommendations themselves provide insu�cient informa-
tion. �e main purpose is to provide a complete mathematical model to allow for
parametric implementation and thus design of thin concrete shell structures.
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Section 8.1 lists details and references on collapsed shell structures, summarizing
common causes for failure. Section 8.2 establishes ranges of typical dimensioning
values for shell structures. Section 8.3 brie�y explains serviceability and ultimate
limit states. �ese concepts are central to limit state design (LSD), which is the
common approach in contemporary engineering. Another state, the critical limit
state, is proposed in order to incorporate IASS 1979 recommendations, which are
still based on outdated allowable stress design (ASD). Sections 8.4 and 8.5 present
the factor of safety λs and knockdown factor γk, which are traditionally used in shell
design to safely account for various nonlinear e�ects, by applying them to the linear
critical buckling load, discussed in Section 8.6. Section 8.7 discusses the overall
stability analysis according to IASS 1979, which individually considers each type
of nonlinear e�ect, together determining the knockdown factor. Based on typical
values, a lower limit of the safety and knockdown factor is given in Section 8.8, before
drawing conclusions in Section 8.9.

8.1 Failures

Literature on failed shell structures is sparse. Ramm (1987) lists known failures of
reinforced concrete shells. �ese and other references generally indicate that creep,
imperfections, wind or some combination thereof are primary causes for failure
(Table 8.1). Godoy (1996) in fact devotes an entire book to the signi�cance and
in�uence of imperfections in shells. �is underlines the need to carefully consider
these e�ects during the analysis of a shell.

For this thesis, failed hypar roofs are particularly relevant to consider. Gallegos-
Cazeres & Schnobrich (1988) claim that the examples shown in Figure 8.2 collapsed
due to creep, exacerbated by their shallow design.
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Figure 8.2: Collapsed hypar roofs, injuring 0, 8 and 18 people respectively (ENR 1960, 1970,
1975), attributed to creep by Gallegos-Cazeres & Schnobrich (1988).
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8.2 Dimensions

Based on existing shell structures, building codes, recommendations and other
literature, it is possible to de�ne typical ranges of dimensioning values. �is section
discusses the thickness, rise, span of shells, their ratios, slenderness and shallowness,
and reinforcement ratios. �ese ranges are used in Section 8.8 and for computational
results in Chapter 11.

8.2.1 Span

As mentioned in Section 3.8.1, Félix Candela and Heinz Isler believed the upper
economical limit for the span of thin concrete shells to be between s = 30 and 90
m. Pneumatically formed domes have been constructed up to 100 m (Figure 3.31).
�e largest built concrete shell is the double-layered shell roof for the Centre des
Nouvelles Industries et Technologies (CNIT) in La Défense, Paris, France, with
a span of 218 m (Figure 8.3). �e 1976 Kingdome in Seattle, US, was the largest
ever concrete dome with a span of 201 m (Figure 8.3). �e ribbed dome consisted
of 127 mm thick, hyperbolic paraboloid segments. By the 1990s, its location was
economically undesirable, and combined with roof leaks and collapsing ceiling tiles,
the decision was made to demolish the unpopular Kingdome in 2000.

8.2.2 Thickness

In absolute terms, Candela constructed some of the thinnest shells, o�en 40mm, and,
in the case of the hyperbolic paraboloid segments of the Cosmic Rays Pavilion, as
little as 15 mm (Figure 8.4). Flexibly formed shells have been constructed between 10
and 135 mm. IASS 1979 mentions that shells as thin as 25 mm have been constructed,
but suggest 50 to 100 mm as a practical range for placing and covering reinforcement.
For shells thinner than 80 mm, it recommends to subtract 10 mm in the calculations
to account for construction errors.
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Figure 8.3: Longest span concrete dome and concrete shell: the 218 m span CNIT shell, Paris,
France, 1958; and the 201 m span Kingdome, Seattle, Washington, US, 1976–2000.

Figure 8.4:�e 15 mm thick, 10.75 m span Cosmic Rays Pavilion, Mexico City, 1951.
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8.2.3 Slenderness

Although there is no o�cial rule as to how thin a thin shell has to be, Chen (2014)
suggests a ratio of span to thickness s/t between 30 and 4000. Figure 3.53 shows
s/t for �exibly formed concrete shells to be between c. 50 and 750. �e globally
mono- or synclastic Ctesiphon shells and the synclastic shells by Isler have a ratio
of about s/t = 360, while the thinnest hypars and the anticlastic shells by Candela
about s/t = 750.

8.2.4 Shallowness

�e ratio of span to rise s/h, or shallowness, for �exibly formed shells is between 2
and 5 (Figure 3.53). In the context of hypar roofs, Gallegos-Cazeres & Schnobrich
(1988) de�ne shallowness by two criteria,

s2
h
≥ 5 (8.1)

and

s1
t
⋅ s2
h
< { 1000/3 for saddle roofs or umbrellas, and

800 for gable roofs, (8.2)

where h is the rise, t is the thickness, s1 is the �rst, larger span, and s2 is the second,
smaller span. �e second criterion in fact is a combination of shallowness and
slenderness. Gallegos-Cazeres & Schnobrich (1988) suggest that shallow shells with
edge beams cannot be accurately modelled by membrane theory, and are more
susceptible to creep and shrinkage. Note that the �exibly formed shells in Figure 3.53
do not meet these criteria for shallowness.

8.2.5 Reinforcement ratio

IASS 1979 recommends that the minimum area of reinforcement in one direction
is µrc = 0.20 %, and the minimum sum of areas of both directions is 0.60 %. �e
maximum reinforcement ratio,
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µ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.6 ⋅ fck
fy

for fck < 28 N/mm2;
16.8
fy

for fck ≥ 28 N/mm2 .
(8.3)

For ferrocement shells, Naaman (2000) recommends a much higher minimum total
volume fraction of µrc = 1.80 %. Based on the above proportions, the minimum area
of reinforcement in one direction could be µrc = 0.60 %. Alternatively, he suggests a
minimum reinforcement ratio,

µrc =
1

fy/ fctm + 1 − n
, (8.4)

where fy is the ultimate strength of the reinforcement, assumed here to be equal to
the yield strength, fctm is the cracking tensile strength of the concrete, assumed to
be the mean value, and the ratio of Young’s moduli for the steel and concrete,

nrc =
Es
Ecr
, (8.5)

where Ecr is a reduced modulus due to creep according to equation (8.32). According
to Eurocode EN 1992-1-1:2004,

fctm =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.30 ( fck)2/3 for fck ≤ 50 N/mm2, and
2.12 ln(1 + fck + 8

10
) for fck > 50 N/mm2 .

(8.6)

8.3 Limit states

Limit state design (LSD) is a standard design approach used in structural engineering.
Beyond a limit state, a structure no longer satis�es certain design criteria. Eurocode
EN 1990:2002 de�nes two types of limit states. Here, a third limit state for shell
structures is also de�ned, based on IASS 1979. Each is discussed in the following
subsections.
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�erecommendations are still based on allowable stress design (ASD), an engineering
approach that has been largely replaced by LSD. �e third limit state is a temporary,
conservative measure, to be used until these recommendations are conformed to
LSD. An update of IASS 1979 could be done on the basis of EN 1993-1-6:2007, a
Eurocode for the design of thin steel shell structures.

Generally, it does not make sense to combine both approaches, and would lead to
the most conservative result. However, due to the lack of an accepted contemporary
engineering practice for shells, ASD or a mixed approach is the current state-of-the-
art, applied to built concrete shells such as the Rolex Learning Center in Lausanne,
Switzerland (Grohmann et al. 2009), the Centro Ovale in Chiasso, Switzerland
(Muttoni et al. 2013), and the Teshima Art Museum in Japan (Sasaki 2014) (see
Section 8.4.1). On the other hand, the Oceanogra�c Centre in Valencia, Spain, simply
applied LSD based on Spanish building code (Domingo et al. 1999, 2004).

8.3.1 Serviceability limit state

�e serviceability limit state (SLS) concerns “the functioning of the structure or
structural members under normal use, the comfort of people, and the appearance of
the construction works”. In SLS, a structure needs to meet criteria for deformations.
�is includes the crack width of concrete. Partial factors for loads and material
strength are generally 1. IASS 1979 claims that given the large variety of possible
shell geometries, no universally allowable displacements can be de�ned. Instead,
it recommends to avoid unsightly sagging, prevent cracking, ensure connection
tolerances and proper drainage.

8.3.2 Ultimate limit state

�e ultimate limit state (ULS) concerns “the safety of people, and/or the safety of the
structure”. In ULS, a structure needs to meet criteria for stability, strength, fatigue
and (excessive) deformations. Both load and material factors are taken into account,
and unlike ASD, material strength is assessed beyond elastic limits. For steel shells,
EN 1993-1-6:2007 de�nes four ultimate limit states: one to assess plasticity; two for
types of cracking due to cyclic loading; and, a fourth for buckling. �e buckling limit
is based on imperfections and buckling reduction factors speci�c to the geometry
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and material of thin steel shell structures, so its application to thin concrete shells is
not immediately obvious. For now, the next section proposes a new limit state based
on IASS 1979 to deal with stability of the shell, referred to as the critical limit state
(CLS).

8.3.3 Critical limit state

IASS 1979 requires the structural engineer to perform a stability analysis, based on
unfactored loads p andmaterial properties. An initial buckling load is calculated and
then modi�ed through several reduction factors to obtain a critical load (capacity)
pplastcr . �e resulting factor of safety,

λs =
pplastcr

p
, (8.7)

e�ectively means the factor by which an SLS load combination can be multiplied
before signi�cant loss of stability occurs. �is de�nition is very similar to that of
the (buckling) load factor λ, explained in 7.2.2. While the factor of safety assumes
that certain nonlinear e�ects have been taken into account, the term load factor is
ambivalent and already applies to critical loads obtained by linear buckling analysis.
�e factor of safety can also be viewed as a partial factor or safety factor for a new
limit state,

λs ⋅ p ≤ pplastcr , (8.8)

to simply verify that the critical load capacity has not been reached. Note that the
load has to be applied incrementally in a nonlinear analysis to obtain a realistic view
of the shell’s load capacity. IASS 1979 in fact uses both meanings for the factor of
safety interchangeably: it can be the load factor that the structure actually achieves, as
in equation (8.7), but also a safety factor that the structure has to meet, as in equation
(8.8). Here, the former will be referred to as the load factor λ, and the latter as factor
of safety λs.
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�e load p is referred to as the “real load” or “shell load” in IASS 1979, but is not
further explained. �is creates a signi�cant gap in understanding, as one might think
this is the shell’s weight, possibly including any dead loads. A �rst hint is provided
by Dulácska (1981), who denotes this load as prealcr , implying it is some kind of critical
load. Furthermore, an example calculation by Kollár & Dulácska (1984) includes
both self-weight and snow load, revealing that p is likely meant to be, or can be
interpreted as, any governing SLS load combination.

8.4 Factor of safety

According to IASS 1979, the value of the factor of safety λs in equation (8.7) is 1.75 if
the critical load increases in the post-buckling range, and a minimum of 3.50 if post-
buckling behaviour governs (Figure 8.5). Section 8.4.2 discusses how to establish
behaviour.

Figure 8.5: Post-buckling behaviour with increasing (case 1) and decreasing (case 2) capacity
of the shell a�er buckling. Adapted from IASS 1979.

�e underlying literature by Kollár & Dulácska (1984) as well as subsequent recom-
mendations for revision of IASS 1979 by Dulácska (1981, 1986) and Dulácska & Kollár
(1995) describe lower factors of safety (Table 8.1). Dulácska (1986) clari�es that IASS
adopted slightly more conservative values from the 1972 German code DIN 1045.

�e factor of safety for shells with decreasing post-buckling capacity is based on
experimental data on axially compressed cylinders or radially compressed spheres.
For shells that decrease at a lower rate, Dulácska (1981) recommends to interpolate
between the values in Table 8.1, so that
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reference increasing constant decreasing
λincr λconst λdecr

Kollár & Dulácska (1984) 1.75 2.50 3.00
IASS 1979 1.75 - 3.50
Dulácska (1981) 1.75 2.50 3.00
Dulácska (1986), Dulácska & Kollár (1995) 1.50 2.35 3.00

Table 8.1: Factor of safety according to IASS1979 and surrounding literature, depending on
whether post-buckling capacity increases, is constant or decreases.

λs = λconst + (λdecr − λconst)
1 − ρhom,0.5
0.75

, (8.9)

where factor ρhom,0.5 is explained in Section 8.7.1.

Alternatively, Dulácska & Kollár (1995) suggest that the factor of safety can be de-
termined by the ratio between the plastic failure load under central compression,
without buckling, and the critical linear buckling load pp/plincr . �is means that if
plastic failure occurs much sooner than buckling, pp/plincr ≈ 0, and the safety factor
λs = 1.50, or vice versa, if pp/plincr = ∞, then λs = 3.00. Dulácska & Kollár (1995)
provides a table with a few intermediate values. A curve �t of these values, proposed
here, is the following generalized sigmoid function,

λs = λdecr − (λdecr − λincr) ⋅
1

1 + (1.17 ⋅ pp/plincr )1.88
. (8.10)

where,

pp =
1.6 ⋅ fck,cube ⋅ t

R
, (8.11)

Depending on the situation, either approach may yield a lower factor of safety than
the other.
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8.4.1 Recent projects

For reference, Table 8.2 shows achieved margins of safety for several recent thin
concrete shells. �e factor for Tomás & Martí (2010b) was calculated by dividing the
reported values for the linear and nonlinear buckling load factors of 8.7 and 2.6.

�e Centro Ovale is implied to meet IASS 1979 requirements, but Muttoni et al.
(2013) and correspondence with Fernández Ruiz (2016) do not provide su�cient
information to verify this independently. It is not immediately clear whether the
other structures satisfy IASS 1979 and the revision by Dulácska (1981), because, apart
from Sasaki (2014), they do not report the required minimum factor of safety, and,
apart from Grohmann et al. (2009), they do use load combinations including both
permanent and variable load.

Sasaki (2014) determines the load factor in two ways, both of which may not actually
conform to IASS1979, likely owing to confusion surrounding its (lack of) de�nition
of the “real load” p to which the load factor applies (see Section 8.3.3).

On a similar note, Grohmann et al. (2009) did not use IASS1979, but were recom-
mended to achieve a load factor of 3.0 by engineer Jörg Schlaich, presumably based
on Dulácska (1981). �eir resulting argument for accepting a factor λ of 2.8, “due to
the high percentage of permanent loads compared to the variable loads” is actually
not valid, since the factor of safety λs does not distinguish between both types of
loads (although perhaps it should). However, a factor of safety of 3.0 is based on the
imperfection sensitivity of a sphere or axially loaded cylinder, whereas a laterally
loaded cylinder might me more apt to approximately describe the geometry of the
Rolex Learning Centre. �is results in a factor of safety λs = 2.7 < 2.8, meaning the
structure does in fact satisfy IASS 1979.

8.4.2 Post-buckling behaviour

�e factor of safety λs according to equation (8.9) requires us to establish the type of
post-buckling behaviour, but IASS 1979 o�ers no guidance on how to do this.

Kollár (1969) and Kollár & Dulácska (1984) establish the behaviour by transforming
a load-de�ection diagram of an imperfect shell to a Southwell-plot, introduced by
Southwell (1932). �is method was originally developed to determine the theoretical
buckling load of a perfect column, based on experimental load-de�ection data on
imperfect columns. �e graph plots the ratio of the de�ection over the load, δ/p,
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against the de�ection δ. �is normally produces a straight line whose slope is
the theorical buckling load, but will deviate if post-buckling capacity increases or
decreases, a phenomenon observed by Roorda (1967) and soon exploited by Kollár
(1969) to establish factors of safety (Figure 8.6).

Figure 8.6: Southwell-plot for structures with increasing (case 1), constant and decreasing
(case 2) post-buckling behaviour. Adapted from Kollár & Dulácska (1984).

Alternatively, the factor of safety λs according to equation 8.10, based on Dulácska
& Kollár (1995), requires us the calculate the linear buckling load and the point at
which plastic failure occurs. �is could be done by evaluating the stress at the linear
buckling load, and comparing that against the material’s yield strength.

By comparison, the latter strategy is more suitable to parametric design, as the
computational demand of calculating the linear buckling load and evaluating the
corresponding stress is much lower than performing an incremental load analysis
with third-order nonlinearity (post-buckling) of an imperfect shell shape.

Another theoretical option, which would still be computationally demanding, is
to calculate the �rst several eigenvalues. A series of closely spaced eigenvalues is
typically seen as an indication that a structure is imperfection sensitive (Chen 2014,
Hoogenboom 2005). �e implication that post-buckling capacity increases in that
case still has to be veri�ed. Moreover, there is no rule at present on how to distinguish
post-buckling behaviour on this basis, but it is imaginable that the standard deviation
of the eigenvalues, which indicate how closely spaced they are, could be used for
such a purpose.

Finally, for early design purposes, one could simply assume whether post-buckling
capacity is increasing, constant or decreasing based on similarity to known shell
shapes.
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8.5 Knockdown factor

Originally, without the aid of computers, it was only possible to calculate the the-
oretical linear buckling load of a perfect structure plincr . However, experimentally
obtained critical buckling loads turned out to be far lower. Extensive experiments
such as those carried out at NASA led to the de�nition of “correlation factors” to
relate these theoretical and experimental values (Weingarten et al. 1968). Based on
such observations, shell design manuals came to recommend the use of the following
buckling formula (Arbocz 1987):

p ≤ γk
λs

plincr , (8.12)

where γk reduces the theorical buckling loads, and is more commonly referred to
as the knockdown factor. Dulácska & Kollár (1995) suggests that “the actual critical
load of the shell is obtained in the following form”:

pplastcr = plincr ⋅ ρhom ⋅ ρcrp ⋅ ρrc ⋅ ρpl , (8.13)

where plincr is the linear critical buckling load, and the reduction factors:

ρhom accounts for geometric imperfections;
ρcrp for creep of concrete;
ρrc for cracking of concrete and the in�uence of the reinforcement; and,
ρpl for plasticity.

If we accept equation (8.8), and then compare it to (8.12) and (8.13), we obtain

γk =
pplastcr

plincr
= ρhom ⋅ ρcrp ⋅ ρrc ⋅ ρpl . (8.14)

�is would allow us to compute a preliminary knockdown factor γk as a composite
factor of reduction factors ρ, without relying on experiments, or on a complex
nonlinear analysis to directly compute pplastcr , instead computing only the linear
critical buckling load plincr . �is is relevant in an early design and optimization stage,
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in which repeated nonlinear analyses might be too computationally demanding.
Note that the �nal structural analysis should still rely on experimental or nonlinear
analysis to assess the shell’s strength and stability, as the knockdown factor has not
been veri�ed for arbitrary shell geometries.

8.6 Linear critical buckling load

Kollár & Dulácska (1984) o�er equations to directly compute plincr for domes, hypars
and hyperboloids supported along their edges under uniform load. �ese can be
used as benchmarks for numerical analysis, before applying it to arbitrary geometries,
loading and boundary conditions.

For a spherical shell, subjected to radial pressure,

plincr =
2√

3 (1 − ν2)
Ecr t2

R2
. (8.15)

For a square hypar under uniform load this load is the same, but multiplied by a
factor ρ, which is a function of the slenderness a/t, and ρ ≈ 1 for a/t ≥ 25 which
covers most conventional cases. If two or all four edges are only vertically supported,
and no longer laterally, the linear critical buckling load decreases, where Kollár &
Dulácska (1984) o�er equations with coe�cients in tabular form.

8.7 Stability analysis

Adopting IASS 1979 requires us to do one of two things: either calculate the initial
buckling load, or critical load plincr , then modifying this load using the knockdown
factor γk; or, directly calculate pplastcr using a su�ciently re�ned computer model. In
either case, the knockdown factor or model re�nements should take into account
the e�ects of

• geometric nonlinearity due to large displacements;
• deviations from the idealized shape (imperfections); and,
• material nonlinearity due to

– plasticity of the concrete,
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– creep (and shrinkage), and
– the e�ect of reinforcement and cracking.

In addition, the importance of including relevant thermal actions is stressed.

IASS 1979 establishes two cases depending on whether post-buckling behaviour
governs or not, which determines the safety factor (Figure 8.5). For case 2, in which
post-buckling behaviour governs, the e�ect of geometric imperfections and large
displacements is taken into account by modifying the initial buckling load

pucr = plincr ⋅ ρhom . (8.16)

For case 1, ρhom = 1. �en, to account for the e�ects of creep as well as reinforcement
and cracking,

pu,reinfcr = pucr ⋅ ρcrp ⋅ ρrc = plincr ⋅ ρhom ⋅ ρcrp ⋅ ρrc . (8.17)

Finally, to account for the plasticity of concrete,

pplastcr = pu,reinfcr ⋅ ρpl = plincr ⋅ ρhom ⋅ ρcrp ⋅ ρrc ⋅ ρpl , (8.18)

arriving at equation 8.13 as de�ned by Dulácska & Kollár (1995). In the following sec-
tions, the individual reduction factors are discussed, as well as the e�ect of shrinkage,
which IASS 1979 treats as a load case.

8.7.1 Effect of large displacements and imperfections

�e reduction factor ρhom, which accounts for geometric nonlinearity and imper-
fections due to large displacements, is determined by calculating the ratio of the
magnitude of the initial imperfection w0 and the shell thickness t, and then applying
the appropriate design curve (Figure 8.7). �e initial imperfection w0 consists of
the calculable imperfection, or de�ection, w′

0 and accidental imperfection, or shape
deviation, w′′

0 .
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Figure 8.7: Curves to determine factor ρhom to account for geometric imperfection sensitivity
of domes, cylinders (IASS 1979), hyperboloids and hypars (Tomás & Tovar 2012). See Table 8.3

�e choice for a speci�c curve depends on the shape and boundary conditions of the
shell, and IASS 1979 mentions that they are available in literature for a large number
of shell geometries and con�gurations. In absence of other information, the lowest of
the curves, the one corresponding to an axially compressed cylinder, is to be chosen,
though Tomás & Tovar (2012) conclude this to be too conservative. Instead, they
generated additional curves for circular barrel vaults, shallow domes, hyperbolic
paraboloids and hyperboloids.

For a mathemical expression of reduction factor ρhom, Kollár & Dulácska (1984)
claim that for w0/t ≤ 1 the curves can be “closely approximated” using

ρhom = 1
1 + 2 ( 1

ρhom,0.5
− 1) w0

t

(8.19)
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where the value of ρhom at w0/t = 0.5,

ρhom,0.5 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1.00 for laterally compressed long cylinders,
0.77 for medium cylinders,
0.59 for short cylinders, and
0.25 for spheres and axially compressed cylinders.

(8.20)

Figure 8.7 shows dotted lines based on equation (8.19) which only roughly approxi-
mate the actual curve, so new approximations are proposed here, both for the three
curves from IASS 1979, and the curves for hyperboloids and hyperbolic paraboloids
with governing boundary conditions by Tomás & Tovar (2012). �e approximations
are either exponential equations of the form

ρhom = a + b ⋅ ec⋅w0/t , (8.21)

or sigmoidal equations of the form

ρhom = a + b − a

1 + (w0/t
c )

d , (8.22)

with parameters a, b, c and d de�ned in Table 8.3.

For vertical hyperboloids, not shown here, the curves are similar to that of a short
cylinder. For hyperbolic paraboloidswith clamped supports at the corners, a common
boundary condition, ρhom ≈ 1, suggesting that they are not sensitive to imperfections.
Although Hoogenboom (2005) and Chen (2014) remark that hypars and negatively
curved shells are less sensitive to imperfections, and become insensitivewith su�cient
curvature, the work by Tomás & Tovar (2012) does not seem to support this. A
more thorough study of post-buckling behaviour of anticlastic shell geometries of
increasing curvature would be required to answer this matter.

Calculable imperfection amplitude

�e calculable imperfection w′
0 is the calculated bending de�ection of the shell or

“computed or measured normal displacement before buckling”.

Dulácska (1978) de�nes this imperfection for positively curved shells as
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geometry load coe�cients
compression a b c d ρhom,0.5

I long cylinder 1.00 0 0 1.00
II medium cylinder lateral 0.65 0.35 -2.25 0.77
III short cylinder lateral 0.45 0.55 -2.68 0.59
IV cylinder axial 0.23 0.77 -6.37 0.25
IV sphere radial 0.23 0.77 -6.37 0.25
V medium hyperboloid lateral 0.90 0.10 -1.42
VI long hyperboloid lateral 0.70 0.30 -1.83
VII hyperboloid axial 0.11 0.89 -12.14
VIII corner supports 1.00 0 0
IX wide hypar lateral 0.62 0.38 -1.36
X narrow hypar lateral 0.45 1.01 0.14 0.63
XI axial hypar axial 0.05 1.01 0.04 0.80

Table 8.3: Exponential or sigmoidal functions, with three or four parameters respectively, �t
to curves from Figure 8.7 to account for geometric imperfection sensitivity. Long, medium
and short cylinders and hyperboloids have L2

Rt = 10’000, 1’000 and 100 respectively. Wide and
narrow hypars not de�ned by Tomás & Tovar (2012).

c R2
R1

t, (8.23)

where R1 and R2 are the radii of principal curvatures, and c is found in Table 8.4
and depends on the presence of lateral pressure in addition to uniform loading, and
the boundary conditions. �e shell with a square plan has edges that are supported
by vertical diaphragms that still allow horizontal movement, so no lateral pressure
develops. �e dome is laterally supported at ground level, or has a tension ring that
is not fully rigid.

boundaries square plan dome dome
without lateral pressure with lateral pressure with tension ring

hinged 0.2 0.1 0.2
clamped 0.1333 0.067 0.1333

Table 8.4: Coe�cient c for calculable imperfection according to Dulácska (1978).

Alternatively, if the displacement is not known, the SLS de�ection limits from code
can be used as a very conservative estimate. For example, using Swiss code SIA
260:2003, de�ections should be less than 1/500th of the span L or 1/300th of twice
the length of a cantilever.
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Accidental imperfection amplitude

�e accidental imperfection w′′
0 is due to erection inaccuracies and is the “amplitude

of shape deviation” (Medwadowski et al. 1979, Tomás & Tovar 2012). If it is not
speci�ed by the contractor, Dulácska & Kollár (1995) suggest it is between 0.25t and
0.75t, and Kollár & Dulácska (1984) that it is R/3500. Kollár & Dulácska (1984) also
propose an equation that Medwadowski (2004) later revised (�rst term was 0.05t) to

w′′
0 = 0.1t +

tαf
2 (1 + β−2s ) , (8.24)

where t is the shell thickness, the radius of curvature

R =
√
R1R2 =

√
1

∥K∥ , (8.25)

where K is the Gaussian curvature,

βs =
R/1000

t
, and (8.26)

parameter αf accounts for the type of formwork, with

αf =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 for rigid forms,
6 for slipforms, and
12 for air-supported forms.

(8.27)

Initial imperfection amplitude

�e combined e�ect of both imperfections is given in several forms: by IASS 1979 as
w′
0 +w′′

0 ; by Dulácska (1981) as the maximum of 0.8w′
0 +w′′

0 and w′
0 + 0.8w′′

0 ; and,
by Kollár & Dulácska (1984) as the maximum of the latter and w′′

0 . �e most recent
recommendations by Kollár (1993) re�ect the low probability that both imperfections
occur at the same location on the shell, so that

w0 =
√

(w′
0)2 + 1.4w′

0w′′
0 + (w′′

0 )2 . (8.28)
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Imperfection shape

For numerical analysis, instead of a reduction factor, it is necessary to assume a shape
of the imperfect shell with the imperfection as its amplitude. Ramm & Stegmüller
(1982) suggest that “the geometrical imperfection can be based upon the buckling
mode at the bifurcation load, on any postbuckling mode, on a combination of
several modes or on realistic deviations of the ideal geometry occurring during the
manufacturing process”. Typically, buckling modes are used.

8.7.2 Effect of creep

Gallegos-Cazeres & Schnobrich (1988) claim that gabled roofs with shallow hyper-
bolic parabolas are particularly sensitive to time-dependent deformation, citing three
speci�c instances of such structural failures (Section 8.1). �ey add that including
creep and shrinkage can lead to 25-50 % reduction in load-carrying capacity and
may increase in displacements by a factor of 4 to 8. For shells in general, IASS 1979
already mentions a factor of 2 to 3.

Dulácska & Kollár (1995) explain that

ρcrp =
1

1 + ζ ⋅ φ , (8.29)

where φ is the creep coe�cient and ζ , introduced here in accordance with IASS 1979,
is the ratio of long term loads p0 to all loads. Kollár & Dulácska (1984) include some
contribution of the short term stresses, rewritten here as loads pt , such that

ζ =
p0 + kcrp ρ̄pt

p0 + pt
, (8.30)

with ρ̄ between 0.5 and 1.0, but conservatively set to 1.0, and kcrp at time t is approxi-
mated here as

kcrp = 0.5 +
1.3

2t/22.08
(8.31)

based on three values given by Kollár & Dulácska (1984).

�e creep coe�cient φ is the ratio of the increase in strain due to creep, or creep strain,
to the initial strain. �e modulus of elasticity of concrete Ec reduces accordingly,
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Ecr =
Ec

1 + ζ ⋅ φ , (8.32)

where according to Eurocode EN 1992-1-1:2004,

Ec = 22′000(
fcm
10

)
0.3

= 22′000( fck + 8
10

)
0.3
. (8.33)

IASS 1979 de�nes the creep coe�cient as

φ = 4 − 2 log fc , (8.34)

where fc is the strength of concrete at the time of loading.

Alternatively, according to SIA 262:2003, art. 3.1.2.5.3, and EN 1992-1-1:2004, the
creep coe�cient at time t, and time at �rst loading t0,

φ = φRH ⋅ βfc ⋅ βt ⋅ βc , (8.35)

where

φRH = (1 + 1 − RH/100
0.1 3

√
h0

⋅ α1) ⋅ α2 , (8.36)

βfc =
16.8√
fcm
, (8.37)

βt =
1

0.1 + (t0)0.20
, (8.38)

βc = ( t − t0
βH + t − t0

)
0.3

, (8.39)

with relative humidity RH in percent, the 28-day cylinder compressive strength
fck = fcm + 8, and the notional size of the cross-section

h0 =
2A
l
= 2 ⋅w ⋅ t
2 ⋅w = t, (8.40)
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with concrete cross-section A, perimeter length of the part that is exposed to drying
l , width of the cross-section w and shell thickness t,

βH = 1.5 (1 + (0.012 ⋅ RH)18) h0 + 250 ⋅ α3 ≤ 1500 ⋅ α3 , (8.41)

and

α1 = ( 35
fcm

)
0.7

, α2 = ( 35
fcm

)
0.2

, α3 = ( 35
fcm

)
0.5

, (8.42)

where each α i ≤ 1.

8.7.3 Effect of shrinkage

�e e�ect of shrinkage is imposed by calculating a shrinkage strain. IASS 1979
suggests that for design purposes, the shrinkage strain

εcs =
90 − RH
80000

, (8.43)

where RH is the relative humidity in percent. Alternatively, according to EN 1992-1-
1:2004, the shrinkage strain is the sumof strains due to drying and due to autogeneous
shrinkage at time t, and time at the start of drying ts ,

εcs = εcd + εca . (8.44)

�ere are multiple con�icting views on this approach from Eurocode.

According to SIA 262:2003, only the drying shrinkage is taken into account, and
increased autogeneous shrinkage for concrete with low water-cement ratios is only
mentioned. Instead, it recommends to perform testing if the in�uence of shrinkage
on the structure is of particular importance.

CIRIA C660 suggests that “when considering long-term deformation, autogeneous
shrinkage is ignored beyond 28 days, except in cases where high strength, low [water-
cement] ratio is used under conditions where moisture loss, and hence drying shrink-
age, will be prevented.” In this case, autogeneous shrinkage is applied for no more
than 28 days as well as an overall stress relaxation factor of 0.65.
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By contrast, Raphael et al. (2012b) suggest both types of strain are applied, and
factored with 1.203 to 1.355 (RH = 40-60 % to 60-85 %) for long-term behaviour and
C40-80 concrete.

Drying shrinkage

�e strain due to drying

εcd = βds ⋅ kh ⋅ εcd,0 , (8.45)

where

βds =
t − ts

t − ts + 0.04
√
h30
, (8.46)

and, interpolated from EN 1992-1-1:2004,

kh = 2.5 ⋅ 10−6 ⋅ h20 − 2.25 ⋅ 10−3 ⋅ h0 + 1.2 (8.47)

with 1.0 ≥ kh ≥ 0.7,

εcd,0 = 0.85 ((220 + 110 ⋅ αds1) ⋅ e(−αds2 ⋅ fcm/10)) ⋅ 10−6 ⋅ βRH (8.48)

with αds1 and αds2 depending on the cement class S, N or R (slow, normal or rapidly
hardening, with αds1 = 3, 4 or 6 and αds1 = 0.13, 0.12 or 0.11, respectively), and

βRH = 1.55 (1 − (RH/100)3) . (8.49)

Autogeneous shrinkage

�e autogeneous shrinkage

εca = βasεca (∞) , (8.50)

where
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βas = 1 − e−0.2t
0.5
, (8.51)

and

εca (∞) = 2.5 ( fck − 10) ⋅ 10−6 , (8.52)

with concrete cylinder compression strength fck.

8.7.4 Effect of reinforcement and cracking

�e e�ect of reinforcement and cracking is taken into account by a factor ρrc. IASS
1979 uses two graphs to determine ρrc using the ratios of the Young’s moduli nrc and
cross-section of the reinforcement steel and the concrete, or reinforcement ratio µrc
(Section 8.2.5).

Instead of graphs, Kollár & Dulácska (1984) has three equations for ρrc, with their
choice depending on the ratio of the eccentricity to shell thickness e0/t. Here, a
single equation is proposed for one of its parameters, ρc, such that ρrc can also be
de�ned using only one of these three expressions,

ρrc =
1 + ψ0
2

ρc + ψ∞ (ρhom − ρc) ≤ 1.00, (8.53)

where the speci�c e�ect of cracking is rede�ned here as a Gaussian function,

ρc = a ⋅ e−(e0/t+b)
2
/(2c2) , (8.54)

with

a = 8.904 − 13.944 ⋅ e0
w0

+ 7.2( e0
w0

)
2
,

b = 0.381 − 0.198 ⋅ e0
w0

+ 0.089( e0
w0

)
2
, and

c = 0.131 + 0.138 ⋅ e0
w0

− 0.05( e0
w0

)
2
.
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�e proportion between the eccentricity and imperfection e0/w0 = 1.00 for cylinders,
0.67 for domes and 0.50 for hypars and hyperboloids (Dulácska 1981, Kollár &
Dulácska 1984).

�e factors ψ0 and ψ∞ account for buckling rigidity in the uncracked state,

ψ0 =
√

(1 + nrcµrc) (1 + 3nrcµrc(1 − 2η)2), (8.55)

and the cracked state of the concrete,

ψ∞ =
¿
ÁÁÀ12 (nrcµrc + ξ)( ξ3

3
+ nrcµrc

2
(1 + 2ξ2 + 2η2 − 2ξ − 2η)), (8.56)

where

ξ = nrcµrc (
√
1 + 1

nrcµrc
− 1) , (8.57)

nrc is de�ned by equation (8.5) and η = 0.2 for reinforcement on both sides of the
shell, and 0.5 for reinforcement on only one side.

�ere are some contradictory approaches as Dulácska & Kollár (1995) apply only
ρc accounting only for cracking, while Kollár & Dulácska (1984) use ρrc, which can
be greater than 1 for small eccentricities, actually having an improving e�ect due to
reinforcement. IASS 1979 refers to the German edition of the latter, but its graphs
clarify that ρrc ≤ 1.0, which was adopted in equation (8.53) as an upper limit.

8.7.5 Effect of concrete plasticity

For design purposes, the e�ect of plasticity is taken into account with the aid of the
semi-quadratic Dunkerley interaction formula (IASS 1979),

⎛
⎝
pplastcr

ppl
⎞
⎠

2

+ pplastcr

pucr,reinf
, (8.58)

which Kollár & Dulácska (1984) rewrite, using equation (8.18), to
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ρpl =
ppl

pucr,reinf

¿
ÁÁÁÀ 1
4
(

ppl
pucr,reinf

)
2

+ 1 − 1
2
(

ppl
pucr,reinf

)
2

, (8.59)

where it is implied that the plastic failure load

ppl ≈ pp
1

1 + 3 ⋅ e0/t
, (8.60)

if e0/t ≤ 1, where pp is de�ned in equation (8.11), and shell thickness t should be
reduced by 10 mm if t < 80 mm. Alternatively, Kollár & Dulácska (1984) suggest

ppl ≈ pp (1 −
2e0
t

) , (8.61)

but this may result in negative values, depending on the assumed eccentricity.

8.8 Limit of safety and knockdown factors

To have an idea of how much the linear critical buckling load potentially would have
to be reduced, a parametric study is carried out to obtain a limit based on realistic
design values.

�e following values are �xed:

density ρ = 25 kN/m3;
yield strength fy = 435 N/mm2;
Young’s modulus Es = 210′000 N/mm2;
reinforcement parameter η = 0.2;
reference period t = 50 years;
time at loading t0 = 28 days;
variable load pt = 1 kN/m2;
permanent load p0 = ρ ⋅ t where ρ = 25 kN/m3 .

Several parameters are varied within the following bounds:
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cylinder compressive strength 20 ≤ fck ≤ 90 N/mm2;
span 5 ≤ s ≤ 100 m;
shell thickness 15 ≤ t ≤ 100 mm;
shallowness 2 ≤ s/h ≤ 5;
slenderness 50 ≤ s/t ≤ 750;
ratio 0.50 ≤ e0/w0 ≤ 1.00;
ratio of reinforcement 0.002 ≤ µrc ≤ eq. (8.3);
relative humidity 25 ≤ RH ≤ 100 %);
formwork factor 1 ≤ αf ≤ 12.

Furthermore, the imperfection sensitivity is evaluated for curves I (ρhom = 1.00) and
IV (spheres and axially loaded cylinders) from Figure 8.7. �e latter is recommended
by IASS 1979 for unknown cases (note that Tomás & Tovar (2012) show a few speci�c
cases that are even worse). �e linear critical buckling load is calculated according to
equation (8.15). �e radius of curvature is assumed to be that of an arc, based on the
chosen span s and the rise h following from the chosen shallowness, and identical in
both directions,

R = 1
8
4h2 + s2

h
. (8.62)

Based on this, the lower and upper limits for the reductions factors are (with values
in brackets for ρhom = 1.00):

0.23 ≤ ρhom ≤ 0.36(1.00)
0.22 ≤ ρcrp ≤ 0.63
0.02 ≤ ρrc ≤ 0.60(1.00)

0.22(0.03) ≤ ρpl ≤ 1.00
(8.63)

�e plasticity factor ρpl has an inverse relation with the other factors. As a result,
the lowest combination found was γk = 0.0024 (0.23 ⋅ 0.50 ⋅ 0.02 ⋅ 1.00) along with
a safety factor of 3.00, for C90/105 concrete, minimum reinforcement, maximum
span, shallowness and slenderness, ratio e0/w0 = 0.5, RH = 25 % and αf = 12, and
imperfection curve IV.�e highest found was γk = 0.33 (1.00 ⋅ 0.63 ⋅ 0.60 ⋅ 0.88) with
a safety factor of 2.35.

As a result, the theoretical linear critical buckling load might be reduced by a factor
λs/γk in the order of 10 to 1000.
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8.9 Conclusions

Shells are extremely e�cient structures, but as a result, can be very sensitive and su�er
from buckling phenomena. Any structural evaluation of a shell needs to account
for geometric nonlinearity due to large displacements, imperfections, plasticity,
cracking, reinforcement, creep, shrinkage and thermal action. �is requires a highly
nonlinear and demanding computational analysis, or traditionally, the calculation of
a knockdown factor γk, which takes these e�ects into account. �e latter is suitable
for early design and optimization where computational time is preferably kept to a
minimum. Only a linear critical buckling load has to be calculated. �e �nal design
should still be veri�ed with a su�ciently re�nedmodel, particularly for non-standard
shell geometries.

An overview has been presented allowing the parametric implementation of the IASS
1979 recommendations for the stability analysis of thin concrete shells. �is requires
us to calculate a knockdown factor from four individual factors ρhom, ρcrp, ρrc and
ρpl, as well as a factor of safety λs for a su�cient margin. �e recommendations
do not provide su�cient information themselves, and recent shell structures re�ect
the confusion in applying IASS 1979. To resolve this, they need to be viewed in
conjunction with surrounding literature by Kollár Lajos (1926–2004), Dulácska
Endre, Stefan Jerzy Medwadowski and others. Graphs and tables have been replaced
by equations �t through their data, speci�cally equations (8.10), (8.21), (8.22), (8.31),
(8.47) and (8.54). Con�icting information has been noted wherever found. European
and Swiss building codes are used as well to �ll in any gaps, but local codes should
be adopted for any speci�c project. E�ects of shrinkage and temperature need to be
added as actions on the structure.

Furthermore, these recommendations are still based on outdated allowable stress
design (ASD); an approach that has been replaced by limit state design (LSD) in
contemporary practice. Since the present demand for thin concrete shells is low,
it is unlikely that dedicated building codes will be developed. Instead, IASS 1979
should be updated to conform to LSD, and a starting point could be Eurocode EN
1993-1-6:2007, intended for thin steel shells.
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�e great liability of the engineer compared to men of other professions
is that his works are out in the open where all can see them. [. . . ] He
cannot bury his mistakes in the grave like the doctors. He cannot argue
them into thin air or blame the judge like the lawyers. He cannot, like the
architects, cover his failures with trees and vines.

—Herbert Hoover, 1954





CHAPTER NINE

Construction process

During the development of the computational approach presented in Chapter 7, three
prototype shells were built as a proof-of-concept of this approach. �e prototypes
themselves were part of the development of the NEST HiLo project (Chapter 12) and
the unbuilt Amant Arts Gallery (Veenendaal & Block 2015). �ese prototypes were
intended to evaluate the design process, investigate constructional details and verify
construction tolerances. Experimental results on these tolerances can be found in
Chapter 10.

�is chapter provides photo documentation of details and construction steps of the
three prototypes. In addition, details from some reference projects are mentioned at
times, particularly the wire-net falseworks shown in Sections 3.7.3, 3.7.4 and 3.7.5: the
1959 Purdue University prototype, 1962 Purdue Golf Course clubhouse and 1962 Bay
Gas Station (Figures 3.47 and 3.48); and, the 1960 Pentagon Hall and its prototypes
(Figure 3.50). Some useful references are recommended for more information on
detailing and construction: West (2016) for fabric formworks, Seidel (2009) for
tensioned membrane roofs, and Naaman (2000) for ferrocement shells.

�e chapter is ordered by logical construction sequencing. Section 9.1 details the
external frame, including drawings from the reference projects. Section 9.2 details
the cable net and it various connections. Section 9.3 lists the fabric used for each
prototype, and Section 9.4 reports the concrete mix used for all prototypes.

A �exible formwork for thin concrete shells consists of an external frame that largely
replaces a conventional shoring system. �e shuttering, which is prestressed or hung
from this frame, is a fabric or cable net. �e traditional de�nition of shuttering is
broadened to encompass materials other than timber. �e cable-net shuttering has
to be covered by a fabric or some type of formwork sheeting or lining.
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Figure 9.1: Nomenclature for traditional and �exible formworks of doubly curved concrete
shells.

9.1 External frame

Traditional shoring systems are usually made from timber, steel or aluminium, and
thus far, external frames for �exibly formed shells have been made from timber and
steel. Some examples have used the frame as lost formwork, to become part of the
composite edge and ridge beams of the �nal shell structure.

Figure 9.2: Timber frame of a cable-net formwork and a fabric formwork prototype.

�ree prototype shells were built using �exible, either a cable-net or a fabric, form-
work (Figure 9.2).
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�e frame for the prototype cable-net formwork used square 90 mm �r elements,
and was designed such that the upper part would be removable for demoulding,
whilst the lower part would support the two bottom corners of the shell. A tension
tie connected the two bottom corners to resist the horizontal thrust from the shell.
�e frame was �rst sti�ened by a timber cross (Figure 9.2) and later by a top member
to allow access for measurements of the cable net (Figure 10.4).

�e frame for the prototype fabric formwork used 60 × 80 mm �r elements, locally
reinforced with 30 × 50 mm beech along the edges connected to the fabric (Figure
9.2). �e frame was built such that the fabric was in an elevated position to allow
access for 3D scanning measurements.

�e cable-net and fabric formwork prototype at Escobedo Construction in Buda,
Texas had digitally fabricated, custom curved timber edge beams (Figure 3.52). In
contrast to the other examples in this section, a separate edge detail was clamped to
the cable net to form the edges of the shell. �e space between the edge beams and
edge detail was used to accommodate turnbuckles for prestressing.

�e timber frames each feature horizontal struts to internally resolve the horizontal
components of the prestress in the cable net or fabric. �e following historical
examples of steel frames do not, and resist these forces through bending of the frame.
At these larger scales, any horizontal strut would have to contend with buckling,
made worse by eccentricities due to increasing sag.

�e 20 � square laboratory model at Purdue University, Indiana, USA had edges of
rolled 6 in steel Z-sections and 4 in steel pipe columns (Figures 3.47 and 9.3) (Waling
& Greszczuk 1960).

Figure 9.3: Connections of the edge beams and tie-rod to the abutment of the laboratory
model in Figure 3.47 (Greszczuk 1959).
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�e full-scale 64 � square structures used custom edge and ridge members, formed
from 5/16 in and 3/8 in steel plate respectively (Figures 3.48 and 9.4).

Figure 9.4: Sections and shell materials of edge and ridge members for Auto Perfection,
formerly the Bay Gas Station, 1960–1962.

�e Pentagon Hall largely consists of 12 × 4 in steel channel sections along the edges,
vertical tapered I-sections, cut from 18 × 8 in sections, as well as 5 × 3 in I-sections
for the mullions (Figures 3.50 and 9.5). A prototype was built using a steel frame, but
Flint (1961) does not describe the dimensions of its sections (Figure 3.49).

�ese examples have used straight steel sections, but curved sections can be used
such as the L-section used for the circular edges of the catenoid-like prototypes
produced in Belgium (Figure 3.20). Similarly, a custom curved tubular steel edge
beam was proposed at an early stage of the NEST HiLo project (Section 12.3).

Apart from the above strategies, it is interesting to point out early formwork proto-
types at Eindhoven University of Technology, Netherlands, and at Anhalt University
of Applied Sciences in Dessau, Germany, that were in fact relatively conventional
membrane structures (Figures 3.16 and 3.17). Although they did not produce �n-
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Figure 9.5: Sections of edge members and steel frame of Pentagon Hall, UK (Flint & Low
1960).

ished concrete shells, they introduce two valuable concepts: both feature edge cables
instead of edge beams; with the former’s cables terminating at struts and ties, instead
of a rigid frame. �is minimizes the need for rigid external framing. Possible draw-
backs are the concentration of forces at the foundations and higher �exibility of the
formwork, leading to greater deviations.
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9.2 Cable net

Once the frame is erected, the cable net can be installed (Figure 9.6).

Figure 9.6: Prestressed cable net, covered with Propex 60-7041 geotextile.

�eprototypes had a 230mm spacing. Historical examples of cable-net formed hypar
shells had a cable-net spacing of about 300 mm for the o�set wire method for the
19.5 m span Purdue Golf Clubhouse and 390 mm for the catenary wires for the 22
m span Pentagon Hall (Sections 3.7.3 and 3.7.4). Hanging roofs, generally made by
suspending concrete panels from cables, may be designed for similar conditions, and
can serve as further source of details and dimensions (Section 3.7).

For the prototype, the cable net was made from 2 mm stainless steel cable. Pentagon
Hall used 7 mm wire with an ultimate strength of about 1379 N/mm2, while Purdue
Golf Clubhouse used 3.4 mm prestressing wire with a strength of 1758 N/mm2. �e
former had PVC sheathing to allow for post-tensioning.

For the �rst prototype, nodes were �xed by simple wire ties. For the second, cross
clamps were used instead (Figure 9.7), which also served as measuring points for
photogrammetry. Purdue Golf Clubhouse did not require ties or clamps, as the cables
followed nearly straight lines, and were held in friction with the insulation boards.
Pentagon Hall similarly had no clamps, only some ties at regular intervals. Section
7.3 also discusses the fact that geodesic lines reduce the need for node connections.

At the ends, the cables were guided through the timber frame along cringles, termi-
nating at eyebolts using crimp sleeves. At one end of each of the twenty cables, a
turnbuckle was used to introduce prestress (Figures 9.8 and 10.2).
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Figure 9.7: Node connection with wire or cross clamp.

Figure 9.8: Turnbuckles and threaded bolts used for prestressing the cable-net and the fabric
formwork respectively

Figure 9.9 shows the smaller and larger Purdue prototypes, which used either screws
or wedge grips. Initially, a Gi�ord-Udall pocket jack was used for prestressing, but
found to be inaccurate in controlling the level or pretension. It was then changed
to a simple lever with a spring at its end, described to be similar to a “pipe clamp
used in furniture making” (Figure 9.10) (Greszczuk 1959). According to Waling et al.
(1964), this custom device was used at large scale as well. �e generator wires of
the Pentagon Hall, sheathed in PVC, were anchored at one end by tapered pins and
attached to adjustable screws for tensioning at the other.

For shuttering, the prototypes used a fabric, as discussed in the next section. �e
Purdue Golf Clubhouse used 9 × 2 × 1/4 � Styrofoam boards with foam wedges
along the edge beams (see also Figure 9.4). �e Pentagon Hall prototype used a
“suspended mesh [. . . ] covered with a light expanded metal lathing in discontinuous
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Figure 9.9: Typical connections of the wires to the edge beams (Greszczuk 1959).

Figure 9.10:Wedges in position and custom device used in pretensioning of wires
(Greszczuk 1959)

strips, overlain by building paper and blocked o� to the required clearance by steel
spacers” (Flint 1961), and the actual structure a layer of light mesh reinforcement,
laid on mortar blocks resting on the lower generator wires. �is was then covered by
1 in thick woodwool and polyethylene sheets (Flint & Low 1960) (Figure 9.5).

9.3 Fabric

�e �rst fabric placed on the cable net was a PP geotextile, Propex 60 − 7041, with a
tensile strength of 42 kN/m, and a 5.2 m roll width (Figure 9.6). �e geotextile was
chosen purely for its similarity in terms of weight, strength and hydraulic properties
to the North American Propex 315ST, used by Prof. Mark West in many of his
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experiments at CAST. �e second fabric was a PP Proserve F0899 with a tensile
strength of 54–60 kN/m, and 3.6 m roll width, used for underwater fabric formworks.
While the �rst prototype used duct tape along the seams of the cutting patterns, the
second was properly sown (Figure 9.11). �e third fabric used was a PVC Ferrari
STAM 7002 with a tensile strength of 30 kN/m, used for in�atables. �e cutting and
welding of the fabric was done by the company Lu� & Laune (Figure 9.11).

Figure 9.11: Sown and welded seam lines for the second and third prototypes

�e �rst fabric was simply tacked onto the timber frame. �e second fabric was also
clamped to the frame with an additional timber pro�le to control the edge geometry.
�e third prototype used existing keder rail pro�les (Figure 9.12).

Figure 9.12: Keder rail with fabric connection, attached to the timber frame along the
perimeter.
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9.4 Concreting

A�er prestressing the formwork, concrete can be applied. �e historical examples
of the Purdue Golf Clubhouse and Pentagon Hall demonstrate that concrete can be
either cast or sprayed.

Figure 9.13: Casting of the �rst and second prototypes.

�e �rst prototype was hand-rendered with a 9 to 29 mm (24 mm average) PVA-�bre
reinforced cement mortar. �e second shell was cast while continuously measuring
the thickness for better control, by distributing the concrete accordingly (Figure 9.13).
It was also �tted with an additional layer of AR-glass textile reinforcement. �e third
prototype was again only �bre reinforced (Figure 9.14). An interesting detail was
that one of the workers lost his balance. �e fabric carried his full weight without
any distress.
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Figure 9.14: Casting of the third prototype.

�emix design and choice of �bre reinforcement was adapted fromMáca et al. (2012),
based on further discussion and availability of materials at the concrete lab. �e
mix design was outside the scope of this thesis, so the only immediate criteria were
to obtain a mixture with high slump, resistance to shrinkage cracking, and tensile
capacity. �e proportions by weight were:

• 1 kg cement (Holcim Normo 5R, CEM I 52.5)
• 0.1 kg microsilica (Elkem Grade 971-U)
• 0.7 kg �ne sand/aggregate (0/4mm)
• 0.015 kg PVA �bres (Kuralon K-II 6/12 mm)
• 0.24 l water
• 0.010–0.015 l plasticizer (BASF Glenium ACE 30)
• 0.015 kg stabilizer (Sika 4R)
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9.5 Conclusions

�is chapter servesmostly as photo documentation for those interested in the speci�c
materials and details that were used in the construction of the prototypes. Some
related information on the reference projects, particularly regarding the external
frame, is provided as it is not easily available, and can also serve as inspiration.
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Part V

Results and applications
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[I have] done all shape-�nding for new shells merely by physical ex-
periments or by design. [. . . ] Someday computers may be helpful in the
creative process of shell design, but only when the structures they propose
have been built and monitored over a period of time.

—Heinz Isler, 1994





CHAPTER TEN

Experimental results

�ree prototype shell structures were cast from �exible formworks1. �e �rst one was
built as a constructional proof-of-concept for the cable-net and fabric formwork, and
to develop an appropriate digital design process. �e second one was constructed to
reduce di�erences between computational model and physical result. �e third one
was built as a constructional proof-of-concept for a purely fabric formwork.

�e �rst two prototype shell structures were built using much of the same cable-net
and fabric formwork. �eir shape has straight edges, and slightly deviates from a
hypar. �e midpoint is slightly higher which reduces maximum de�ection. �e 25
mm thick shells were 1.8 × 1.8 m in plan, and had a height of 1.2 m (Figure 10.1). Both
shells acted as prototypes for the NEST HiLo project (Chapter 12).

�e third, fabric-formed shell is based on a minimal surface between straight edges,
and is a 1:4 model of one of the roofs of the Amant project (Veenendaal & Block
2015). �e 30 mm thick shell was 1.73 × 1.83 m in plan, and had a height of 0.65 m
(Figure 10.1).

To establish construction deviations for these prototypes, both geometry and forces
had to be measured. To measure geometry and deformations, traditional rulers,
meters or gauges as well as more advanced photogrammetry, 3D scanning or digital
image correlation can be used. Existing methods to measure cable force are strain
gauges or extensometers, hydraulic force transducers, vibrating wire sensors and
three-point bending measurements with tension meters. Methods to measure fabric
stress are less common. Although strain gauges are used for bi-axial material testing
of fabrics, Seidel (2009) notes that they are impractical for on-site measurement of

1�is chapter is partially based on Veenendaal & Block (2014b) and Veenendaal, Bezbradica, Novak &
Block (2014).
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Figure 10.1: Two cable-net and fabric-formed prototype shells, April 2013 and February 2014,
and third fabric-formed prototype shell, June 2015, built at ETH Zurich, Switzerland.

membrane roofs. Possible alternatives are an oscilloscope to measure the spread
of waves through the fabric, a circular “plate-shaped device” that applies a de�ned
pressure, and a “ring force measuring device” with two potentiometers that applies
a de�ned point load (Seidel 2009). However, it is unknown whether such devices,
developed for tensioned membrane roofs, would give accurate predictions for fabrics
under (concrete) load.

Di�erent measuring strategies were applied to the prototypes, as summarized in
Table 10.1 and explained in Sections 10.1, 10.2 and 10.3, both for measurement of
geometry and forces. �e geometry a�er the application of concrete or an equivalent
load was then checked against the geometry of the design model. Measurements are
compared with precedent studies for which data has been published in Section 10.4.
�e cost of the prototypes is compared to that of existing �exible and traditional
formwork in Section 10.5. Some conclusions are drawn in Section 10.6.
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geometry forces
prototype 1
initial, prestressed state tape measure springs (20)
�nal, loaded state tape measure and laser meter (13) springs (20)
estimated error ± 5 mm ± 11.6 N
prototype 2
initial, prestressed state photogrammetry (60) tension meter (140)
�nal, loaded state photogrammetry (60) tension meter (140)
estimated error ± 0.8 mm ± 22 N
prototype 3
initial, prestressed state portable 3D scanner
�nal, loaded state portable 3D scanner
estimated error ± 0.3 mm/m

Table 10.1: Equipment used for measuring geometry or forces in various stages (number of
measurements in brackets).

10.1 First prototype

�e �rst prototype was primarily intended to develop constructional details and
verify the computational design process. Nonetheless, some measurements were
taken to quantify the formwork’s total deviations, and inform further improvements.

10.1.1 Forcemeasurements

In order to measure forces, the cable net was �tted with springs (Federtechnik No.
50885.01) at twenty locations, one for each continuous cable (Figure 10.2). �e
springs act as simple extensometers. �e springs were selected to have the highest
(most sensitive) spring rate k while still �tting within the mesh of the cable net at
maximum load. �e measured force F could then be calculated using Hooke’s law,
F = k ⋅ u, where the spring rate k = 11.6 N/mm according to the manufacturer and u
is the measured elongation of the spring. Assuming a measuring error of ± 1 mm, the
error in measured prestress F would be ± 11.6 N, or 4-12 % full scale, given that the
maximum prestresses were calculated to range between 93 and 262 N.�e springs
were then used to verify the required prestressing forces prior to casting.
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Figure 10.2: Cable-net and fabric formwork, using springs to measure forces via elongation.

10.1.2 Geometry measurements

A�er the concrete had cured, thirteen measurements were taken at nodes of the
cable net (speci�cally, the imprint of those nodes le� on the concrete shell) to see
how much the actual prototype deviated from the computer model.

�e top surface of the lower timber members, corresponding to the bottom side of
the hypar’s bounding box, was taken as a reference level z = 0. Measurements in the
horizontal xy-plane were taken using a tape measure with an error of ±5mm (due to
limited accessibility underneath the shell), and in vertical z-direction with a laser
meter (Leica Disto Classic 5) with an error ±5mm (due to the high local curvatures
around the node locations on the shell surface). Measurements revealed an average
deviation of µ = 22.1 mm with a standard deviation σ = 0.7 mm.
A�erwards, the shell was cut and the thickness of the section was measured. �e
actual prototype had a thickness varying between 10–30 mm, averaging c. 24 mm,
rather than the uniform thickness of 25 mm in the computational model.

10.1.3 Interpretation

�edeviations in the geometry are attributed to the assumed properties of the springs
used for measurement, causing an inaccuracy of 40-50% in the measured forces.
Two reserve springs were load tested to check the speci�cations of the manufacturer.
�ese showed that the actual spring rate varied between 13.4-24.0 N/mm, instead of
11.6 N/mm, exhibiting nonlinear behaviour for the �rst 15 kg applied.

�e approximate loads from the concrete and the assumed cable sti�ness (E = 195
kN/mm2) are both ruled out as major sources of inaccuracy:
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• For a uniform thickness of ± 5 mm, the position of the nodes in the computa-
tional model varies by less than 1 mm, less than our error in measurement.

• For a higher E-modulus of 210 kN/mm2 (another common value for steel)
forces di�ered no more than in the order of 0.1 N (less than the accuracy of
our measuring devices), and the maximum di�erence in cable length was in
the order of only 10−3 mm.

10.2 Second prototype

To understand and control the relatively large di�erences between the actual and
designed loaded states in the �rst prototype, the second prototype focused on alter-
native strategies to measure both force and geometry. Forces were measured using a
tension meter, while geometry was measured using photogrammetry.

A�er prestressing the cable net to correspond to desired force values, it was loaded
and measured again. �e loads from the wet concrete were simulated by discrete
weights applied at the nodes, allowing access and transparency for both types of
measurement. �e loads were 1.5 L PET bottles �lled with sand with an error of ± 1
g. �e equivalent uniform thickness of the shell was modelled to be 15 mm such that
no more than one bottle per node was required. �is meant a range of 1’545-2’146
g per node, or an accuracy of 0.05-0.06 % full scale. A�er the measurements were
completed, the bottles were removed, fabric was applied and the shell was cast (Figure
10.3).

10.2.1 Forcemeasurements

Instead of springs, a compact and portable aircra� cable tension meter (Tensitron
ACX-250-M)was used for the forces, which takes three-point bendingmeasurements
(Figure 10.4). When properly calibrated, it has an accuracy of 2 % full scale. With an
upper limit of 250 lbs, or 1’112 kN, this means an error of ±22.2 N. �is is more than
the theoretical accuracy of the springs. However, the tension meter was assumed to
be more reliable, faster, would leave no imprint on the concrete, and allowed a larger
set of 140 measurements, one for each cable segment.
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Figure 10.3: Second prototype shell a�er demoulding.

10.2.2 Geometry measurements

Both the loaded and unloaded state weremeasured by photogrammetry at each of the
sixty nodes. Photography was done using a specially calibrated Nikon D3200 camera,
using coded targets from the Australis Photometrix so�ware package. Photographs
were taken from a static platform, while rotating the model on the ground. Rotating
the model allowed the three-dimensional reconstruction of the nodal points while
the camera is in the same position. �e reconstruction was executed in the so�ware
program PhotoModeler Scanner and resulted in a point cloud model (Figure 10.5).

10.2.3 Interpretation

�e point cloud data from photogrammetry was compared to the design model.
Multiple comparisons were then made between the design model and the as-built
result (see Table 10.2).
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Figure 10.4: Cable-net and fabric formwork with dummy loads, using tension meter to
measure forces, both in the prestressed and loaded states.

Figure 10.5: Cable-net and fabric formwork with dummy loads, using photogrammetry to
measure geometry.
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1. First, the distances between design and measured nodal coordinates were
calculated.

2. Second, the measured boundaries did not exactly match that of the digital
model, presumably due to construction deviations and deformations of the
timber frame. �e digital model was therefore remapped to exactly �t the
measured boundary, and nodal distances were recalculated.

3. �ird, themeasured nodal points were projected to amesh of the designmodel,
to �nd corresponding closest points. �e distances between the measurements
and their projections on the target surface were then calculated. �is quantity
re�ects how deviations would be checked against tolerances in practice.

Table 10.2 reveals that most of the deviations were already accumulated in the pre-
stressed state. �e table also shows that when conforming the digital design model
to the measured boundary, the deviations are reduced more in the unloaded state
than in the loaded state. �is suggests that deformation of the timber frame has a
large in�uence, and the edges cannot be considered as �xed. Excluding this e�ect
reduces the �nal average deviation from 10.0 mm to 7.0 mm.

Furthermore, in-plane nodal deviations are higher than the out-of-plane deviations.
�e latter, the distances between the measured points and the target surface, are of
greater interest when comparing structural behaviour of the as-built shell with that
of the digital model. Arguably, they are also of greater importance for any client. By
excluding in-plane deviations, the average deviation normal to the target surface is
2.0 mm instead of the total of 7.0 mm (Table 10.2).

�e measured forces f and lengths l are not in exact equilibrium, and the residual
forces can be regarded as errors in the measurements. To post-process the measure-
ments, static equilibrium was recalculated using the force density method (Section
5.3.4) with the individual force densities derived from the measured forces and
lengths, q = L−1f . By equilibrating the measured cable net, thus attempting to ex-
clude measurement errors or variation in these measurements, the average deviation
is reduced from 2.0 mm to µ = 1.3 mm with a standard deviation σ = 0.8 mm (Table
10.2).
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type no. prestressed state loaded state
µ ± σ min.-max. µ ± σ min.-max.
[mm] [mm] [mm] [mm]

node-to-node distance 1 7.8 ± 2.5 3.5-13.0 10.0 ± 2.6 5.3-16.0
with remapped boundaries 2a 7.0 ± 3.1 1.1-14.2 7.0 ± 3.3 1.6-15.0*
and recomputed equilibrium 2b 2.6 ± 1.0 0.5-4.5

node-to-surface distance
with remapped boundaries 3a 2.6 ± 1.4 0.0-5.5 2.0 ± 1.5 0.0-6.7
and recomputed equilibrium 3b 1.3 ± 0.8 0.0-3.1

Table 10.2: Comparisons between photogrammetric measurements and design model for
both unloaded and loaded state. Values are mean ± standard deviation, and minimum to

maximum.

Figure 10.6 visualizes the deviations, which show a correlation with the prestressing
sequence. Turnbuckles were installed at one end of each continuous cable. �e
cable net was installed by placing nodes, measuring lengths and prestresses, while
working from edge AB towards the opposite edge CD where the turnbuckles were.
�is could have introduced a cumulative error, which would explain the asymmetry
of the deviations. It is assumed that the remaining deviations are due to construction
errors, with this asymmetry being the main cause.

Figure 10.6: Position of turnbuckles, asymmetric distribution of deviations (2a) from Table
10.2, and direction of installing and prestressing the cable net.

�e last results (3b) from Table 10.2 are assumed to be the �nal deviations of the
second prototype. As mentioned, these deviations exclude those due to the timber
frame, and measure deviations normal to the surface.
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10.3 Third prototype

�e third, fully fabric-formed prototype, required other strategies to measure forces
and geometry. For the third prototype, only geometry was measured, as measuring
stresses in a fabric, certainly during concrete casting, is not straightforward.

10.3.1 Geometry measurements

ACreaformGo!SCAN50 portable 3D scanner was used tomeasure geometry (Figure
10.7). �e scanner has a reported accuracy of 0.3 mm/m and operates on a maximum
area of 380 × 380 mm. �e so�ware registers reference points on the frame and
produces a dense surface mesh. A global registration, based on 116 target points on
the rigid frame, produced an average point-distance of 0.4 ± 0.34 mm with respect
to the design.

Figure 10.7: Fabric formwork using portable 3D scanner to measure geometry.

Figure 10.8 shows the results of the measurements, compared to the original design
model. �e average and maximum deviations were 19.6 and 52.0 mm respectively.
�e deviations also reveal the in�uence of the seam lines.

Figure 10.8: Design model, scanned model, and deviations between the two.
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10.3.2 Interpretation

�e fabric-formed shell deviated substantially from the intended design. �ere are
global and local e�ects. �e overall shape deviates due to insu�cient prestress,
meaning that the cutting patterns were either incorrectly produced, or the material
model did not accurately re�ect its real behaviour. At the recommendation of the
supplier, the material model was based on the properties of V700 fabric Galliot &
Luchsinger (2009), due to its similarity, in terms of tested properties, weave and
coating, to the STAM 7002 fabric that was actually used. Locally, the welded seam
lines are closer to the target surface as their sti�ness is twice that of the rest of the
fabric. �is e�ect, though obvious in hindsight, was not anticipated. To alleviate this,
further work should consider alternative detailing, for example by staggering cutting
patterns, such that the thickness of the fabric is more uniform throughout.

�e true causes of the deviations is ultimately di�cult to ascertain, as methods to
measure stresses in fabrics were not available.

10.4 Construction tolerances

Partial safety factors in building codes will typically account for some construction
deviations without jeopardizing structural safety. �e allowable tolerances should be
speci�ed according to the local building code.

For instance, in Eurocode EN 13670:2009, tolerances are ±5-10 mm for the depth of
a concrete slab or plate less than 150 mm thick, and ±5-10 mm for concrete cover.
Similarly, for a shell less than 80 mm thick, IASS 1979 recommends to subtract 10
mm for structural calculations.

�ese tolerances do not relate to the overall shape of a shell and its possible geometric
imperfection. Eurocode EN 1993-1-6:2007 de�nes imperfections speci�c to steel
shell structures and EN 13670:2009 de�nes eccentricities for (concrete) walls and
columns. For example, EN 13670:2009 de�nes eccentricities of ±15-30 mm for walls
and columns, as well as deviations of up to ±50 mm for multi-storey buildings with
an inclination. Unfortunately, no guidance is given for concrete shells. Instead,
an acceptable tolerance can be based on the accidental imperfection in IASS 1979,
explained in Section 8.7.1 and equation (8.24).
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Figure 10.9 and Table 10.3 show an overview of the present two cable-net and fabric-
formed prototypes as well as precedent studies on �exible formworks for which data
was published. Here, the total di�erence between design model and �nal loaded state
is compared, where the di�erence is the sum of deformations δ due to loading of
the formwork and additional deviations ∆ from the predicted geometry. Waling &
Greszczuk (1960) measured deviations ∆ from a true hypar, but prior to loading the
formwork. Additional deformations δ due to loadingweremeasured as well, and have
been added here. Cauberg (2009) reports calculated deformations δ and additional
measured deviations ∆ of the formwork for six prototypes. Figure 10.9 illustrates
that the design model for the present prototypes already included deformations, and
that the initial, unloaded state was accordingly prestressed, or precambered.

Figure 10.9: Sequence of di�erences from design model to �nal built state for Cauberg
(2009), Waling & Greszczuk (1960) and the present study, with data in Table 10.3.

�e total construction errors are the sum of deformations and deviations. �ese can
be compared with the accidental imperfections w′′

0 , which are considered here to
be the allowable tolerances. �e accidental imperfections in Table 10.3 have been
calculated according to Medwadowski (2004):

w′′
0 = 0.1e +

eαf
2(1 + β−2s ) , (8.24)

where shell thickness e is taken from Table 10.3, factor αf = 12 for air-in�ated forms
(assumed to be valid for �exible forms in general), the radius of curvature
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R =
√
R1R2 =

√
1
K
, (8.25)

where R1 and R2 are the radii of principal curvatures and K is the Gaussian curvature,
and

βs = 0.001
R
e
. (8.26)

�e radius of curvature for the catenoids by Cauberg (2009) is estimated by assuming
that at the edges, R1 = 1

2 s, and that in the other direction the shape is also semi-
circular, such that

R2 =
1
8
4h2 + s2

h
, (10.1)

where span s and rise h are taken from Table 10.3.

�e Gaussian curvature for the hypars by Waling & Greszczuk (1960) is assumed to
be (Weisstein 2016)

K = − 4a6b6

a4b4 + 4b4x2 + 4a4 y2 , (10.2)

where, for a square hypar,

a = b = 1
2
s
√
1
h
, (10.3)

with span s taken from Table 10.3 and assuming the lowest curvature, located at the
tips, where

x = y = 1
4
√
2s. (10.4)

Table 10.3 shows that the second prototype is the only �exible formwork that has de-
viations within the limit of accidental imperfections. �is is partly because precedent
studies did not include deformations in their designmodel. Instead, they constructed
their formwork to re�ect the design prior to loading, meaning any load immediately
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represents a deviation. By considering their result as if they had followed the present
approach of recalculating prestresses, we can exclude the deformations from their to-
tal error. In that case, the deviations for the laboratory model byWaling & Greszczuk
(1960) and three out of six prototypes by Cauberg (2009) actually also fall within
acceptable limits of the accidental imperfections.

Alternatively, the deviations can be accounted for by assuming larger imperfections
in the stability analysis. If, for instance, we assume the imperfections to bew′′

0 = 0.75e
(Dulácska & Kollár 1995), then more, but not all, �exible formworks in Table 10.3
have deviations below that limit. Of course, these higher construction deviations
still need to be acceptable for reasons of serviceability.

10.5 Cost estimation

Table 10.4 shows the materials and their costs for the �rst prototype formwork. �e
cost of the formwork is CHF 527.79, or CHF 162.90 per plan square meter with nearly
60 % due to the timber frame. �e relative cost is expected to go down at larger spans,
where the ratio of surface area to edge perimeter is higher. �is is more likely if the
falsework system supporting the edge transfers its loads through supporting struts
and ties rather than through bending of the edge itself. �e relative cost will also go
down for multiple use of the formwork. Indeed, much of the �rst prototype could be
reused for the second one, reducing the average cost.

component type qty. cost per unit total excl. total cost
[CHF/unit] [CHF] [CHF]

timber 1 m 100×100 mm �r 25 11.50 287.50 310.50
fabric 1 m2 Propex 60 − 7041 9 0.71 6.39 7.60
tacks 1 kg 1.8×20 mm 0.5 26.10 13.05
cable 1 m INOX V4a 2.0 mm 100 0.52 52.29 58.10
wire steel wire 1 mm 12.00 12.96
cringle 6 mm 60 0.62 37.26 40.24
turnbuckle M5 20 2.00 40.00 43.20
crimp sleeve 2 mm 60 0.09 5.49 5.93
quick link 4 mm 40 0.56 22.32 24.11
eye screw M6×40 20 0.56 11.20 12.10
total 527.79

Table 10.4: List of materials, quantities and cost in Swiss francs for the �rst formwork.

Apart from the initial woodwork, construction involved only unskilled labour. �e
various activities are summarized in Table 10.5 for both prototypes.
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activity cable-net and fabric formwork fabric formwork
no. formwork shell no. formwork shell
1 2 max. avg. 3 max. avg.

woodwork 8 1 8 1 1
carpentry 39 15 39 16 16
patterning 8 5 8 * *
installation 34 32 33 10 10
prestressing 12 14 13 1 1
concreting 22 14 18 25 25
total 123 81 55 64 62 26 36
total per unit area 38 25 17 20 19 5 11

Table 10.5: Labour involved in construction of prototypes and resulting shell structures in
hours. Plan area is 3.2 m2 for all prototypes. *labour included in price of membrane

�e cost of formwork and shell construction can be expressed in €/m2, by assuming
an unskilled hourly rate of CHF 63, a construction cost index of 1.62 to convert from
Switzerland to UK/US (Moore & Riley 2012), and an exchange rate of 0.91 from
Swiss francs to €. �e cost of concrete is not yet included. Naaman (2000) estimates
5.81-15.61 $/m2/cm for ferrocement construction in 1980, up to double that for on-site
construction. �e range is due to the amount and type of reinforcement. Correcting
for in�ation with 3.34 (Williamson & O�cer 2016), and an exchange rate of 0.89
from US dollars to €, the lower limit for the cost is 33 €/m2/cm, or 83 €/m2 for a 25
mm thick shell.

�e resulting cost for the formwork is

(CHF 63/hr ⋅ 17 hr/m2 +CHF 162.90/m2) ⋅ 0.91/1.62 ≈ 690 €/m2

and for the shell, it is

CHF 63/hr ⋅ 20 hr/m2 ⋅ 0.91/1.62 + 83 €/m2 ≈ 790 €/m2 .

�e formwork cost of 690 €/m2 is well above the 150-500 €/m2 found for existing
�exibly formed shells (Section 3.8.4), but still within the range of 400-800 €/m2 for
full-scale timber and milled foam formworks (Section 2.5.7).

�e material cost of the third, fabric-formed prototype was CHF 2’380 or CHF
743.75/m2, consisting of CHF 470 for the timber, CHF 1’650 for the membrane (incl.
labour) and CHF 260 for hardware. �e resulting cost for the formwork is
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(CHF 63/hr ⋅ 5 hr/m2 +CHF 743.75/m2) ⋅ 0.91/1.62 ≈ 590 €/m2

and for the shell, it is

CHF 63/hr ⋅ 11 hr/m2 ⋅ 0.91/1.62 + 83 €/m2 ≈ 470 €/m2 .

Like the cost of the cable-net and fabric formworks, the cost of this fabric formwork
is above that for existing �exible formworks, but comparable to that of timber and
milled foam formworks.

10.6 Conclusions

Based on the historical overview in Chapter 3, including speci�c studies, as well as
the present study in Section 10.4, possible strategies to improve accuracy of �exible
formworks that have been used are:

• to reduce the applied loading by layering and curing the shell in stages, thereby
creating a partially or entirely self-supporting structure as soon as possible;

• to increase the sti�ness of the material (e.g. coated instead of uncoated fabrics,
cable nets) and/or the prestress such that the formwork is less sensitive to the
magnitude of the applied load;

• to design for the loaded state, in order to take deformations due to the applied
concrete load into account when calculating prestresses, and thus exclude
those deformations from the �nal construction errors; and,

• to accurately measure and correct these required prestresses before applying
the concrete.

�e approach used for the second prototype is based on the latter three: a cable
net for the required prestresses in the �nal state are calculated, then measuring and
controlling the prestresses required in the initial state.

An evaluation of the �rst prototype excluded modelling assumptions such as the
magnitude of the loads and material sti�ness as major sources of deviations.
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A comparison of the present work with precedent studies in Table 10.3 demonstrates
that deformations are considerable, and therefore must be taken into account in the
design of �exible formworks to limit deviations. It is recommended to evaluate the
in�uence of the sti�ness of the external frame, possibly requiring the inclusion of
beam elements during constrained form �nding (best-�t optimization).

�e second prototype o�ered signi�cant improvements in deviations compared to
the �rst and third one. Most of the remaining deviations were already present in the
prestressed state. �ese observations underline the importance of accurate measure-
ments of geometry and particularly forces, and subsequent control of prestresses.
It is further recommended to prestress in a symmetric fashion from both ends of
the cables, and prefabricate or measure the cable net in such a way that cumulative
errors are avoided.

�e third, fabric-formed prototype was unable to meet reasonable deviations, due
to insu�cient prestress and not having considered the local sti�ness of the seams.
It is unclear whether construction deviations or incorrect material modelling led
to inadequate stress compensation of the patterns. Another di�culty, compared to
cable nets, is that prestresses cannot easily be measured, or equipment to do so, is
not commonly available.

�e accidental imperfections need to be included in a stability analysis of the result-
ing shell structure according to IASS 1979. �ese imperfections can be calculated
according to Medwadowski (2004) with αf = 12 (currently recommended for air-
in�ated forms), if best-�t optimization as well as force measurements and control are
included in the design and construction process. �e accuracy of the measurements
and control needs to be comparable to that of the second prototype.

�e cost of the prototypes is already competitive to that of full-scale, one-sided
timber and milled foam formworks for concrete shells. For larger-sized, commercial
versions, it is expected that economies of scale will reduce the cost, closer to that
found for other, existing �exible formworks.
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It’s a serious problem that the majority of those who work only with
computers today are incapable of seeing [. . . ]. One can’t invent new struc-
tures by sitting in front of a computer, because the computer shows only
the in�nite possibilities of what has already been invented.

— Frei Otto, 2004, from Songel (2010)





CHAPTER ELEVEN

Computational results

Based on the design process outlined in Chapter 7, a parametric study is carried
out to investigate the limits and sensitivities of a �exibly formed shell. �e span
and slenderness of a square hyperbolic paraboloid are varied. �e model outputs
unity checks for de�ection, strength and load factor of the shell based on a simple
loading combination. �e forces and stresses for the required cable-net or fabric
formwork are calculated, as well as the reaction forces on the external frame. �e
structural analysis is linear elastic, and accounts for nonlinearities through safety
and knockdown factors according to IASS 1979, as outlined in Chapter 8.

Section 11.1 outlines the parametric model, its parameters, variables, modelling
assumptions, and limits placed on outputs. Section 11.2 presents results to establish
limits for �exible formwork, investigate material economies, evaluate the in�uence
of optimization on the formwork, and errors on its tolerances. Section 11.3 concludes
the chapter.

11.1 Parametric model

Both a shell and its required formwork are modelled using a parametric model. �e
present example is a square hyperbolic paraboloid with four parameters governing
its shape, two of which are kept �xed in this case: span s, proportion between width
and length α = w/l = 1, shallowness β = s/h and a coe�cient a = 1. A ��h parameter,
slenderness s/t, determines the thickness.
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11.1.1 Variables

�e three parameters that are not �xed, are varied within the following bounds:

span 5 ≤ s ≤ 50 m;
shallowness s/h = 2 or 5;
slenderness 50 ≤ s/t ≤ 750.

�e span is increased by 5 m increments, and slenderness by 100.

11.1.2 Loads

A simple loading combination is assumed: a live load of pt = 1 kN/m2 and the dead
load p0 = ρ ⋅ t where ρ = 25 kN/m3. Strains due to shrinkage or temperature are not
considered.

11.1.3 Material

�e assumed material is a C50/60. �is is a reasonable assumption, given that
historical examples of cable-net formed hypar shells had a strength of about C45/55
to C50/60 regardless of whether they were cast or sprayed (Sections 3.7.3 and 3.7.4).

Additional parameters govern the structural analysis, safety and knockdown factors,
as explained in Chapter 8. Based on equations (8.4) and (8.3), and Section 8.7.2, the
reinforcement ratio ranges between µrc ≈ 1.0 and 4.0 %. Here, the assumed ratio is
twice the lower limit. All parameters are:

density ρ = 25 kN/m3;
yield strength fs = 435 N/mm2;
Young’s modulus Es = 210′000 N/mm2;
reinforcement ratio µrc = 0.02;
reinforcement parameter η = 0.2;
time at loading t0 = 28 days;
relative humidity RH = 75 %.

For the cable net, the Young’s modulus is 200’000 N/mm2 and the assumed strength
is 500 N/mm2. For the fabric, the Young’s modulus is 1’000 kN/m and the strength
is 150 kN/m with a material factor of 5.
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11.1.4 Geometry

�e square hypar is de�ned as

z (x , y) = 1
2
(x2 + y2)( 1

a2
− 1
b2

) + xy ( 1
a2

+ 1
b2

) . (11.1)

If straight edges are assumed, then b = a, such that

z (x , y) = 2xy
b2
. (11.2)

�e Gaussian curvature

K (x , y) = k21 − k22
(1 + (k1x + k2 y)2 + (k2x + k1 y)2)

2 , (11.3)

where

k1 =
1
a2

− 1
b2
and k2 =

1
a2

+ 1
b2
.

If the edges of the hypar are �xed, the span s is equal to its width, so s = w. For a
given proportion α = w/l , the rise of the hypar h = −z (w/2,−1/α ⋅w/2),

h = c1
s2

a2
+ c2

s2

b2
(11.4)

where

c1 =
1
8
(−1 + 2

α
− 1

α2
) and c2 =

1
8
(1 + 2

α
+ 1

α2
) . (11.5)

For straight edges with b = a, the rise simpli�es to

h = 1
2α

s2

b2
. (11.6)
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For a given span s, proportion α = w/l , shallowness β = s/h, and a given proportion
γ = a/b, such that a = γ ⋅ b,

b =
¿
ÁÁÀβs ( 1

γ2
c1 + c2) (11.7)

or, if b = a,

b =
√

βs
2α
. (11.8)

�e boundary conditions of the hypar are three �xed vertices at each corner, and
vertical springs along the perimeter to model a structural facade (Figure 11.1). �e
spring constants are determined by �rst analyzing the shell with a �xed perimeter.
�e vertical reaction forces are then divided by 1/1000th times the span s, to obtain the
constants. �is assumes that the facade is structurally engineered to allow de�ections
in this order of magnitude.

�e cable-net formwork is modelled by a �xed spacing of 1/10th of the span, such
that the number of elements remains constant regardless of the span, and analysis
does not slow down. When increasing density, the cable force per meter width was
observed to stay fairly constant, showing that this assumption is acceptable. At the
same time, this force per meter width can be used to represent the stress in a fabric
formwork, i.e. the cable-net analogy.

11.1.5 Limits

Several potential limiting factors in�uence the feasibility of a �exibly formed shell.
�ese are the allowable de�ection, material strength and buckling of the shell, as well
as the allowable prestress and material strength of a fabric formwork.

As cables are widely available in very large dimensions, and equipment to prestress
them exists, no limit is suggested for allowable prestress or strength of the cables.
Instead, the required unit weight of cable steel is used as the vertical axis to present
the results from the parametric study. However, the weight of two seminal cable-net
roofs, the Munich Olympic Stadium and the London Velodrome, is indicated for
reference.
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Deflection

�e allowable de�ection of the shell is set to be 1/500th of the span. �e Young’s
modulus of concrete Ec is reduced according to equation (8.32) to account for the
e�ect of creep in the calculation of de�ections. Note that this value is not applied
when calculating the buckling load factor, where it is taken into account through
reduction factor ρcrp (Section 8.7.2).

Concrete strength

For the “design of bending reinforcement [of shells] no satisfactory method exists.
Generally, the methods copied from the design of beams seem to be used” (Medwad-
owski 1998). An approximation method for beam design is used here to establish the
stress when both the concrete and steel have reached yield strain and become plastic.
�is stress is then used as an upper limit for design using linear elastic analysis.

Using the assumed reinforcement ratio µrc, the force equilibrium in the section,
between the resultant compression force in the concrete compression zone and
tension force in the reinforcement in the cracked zone, requires that

As/2 ⋅ fs = 0.8x ⋅ 0.95 fcd
µrc/2 ⋅ t ⋅ fs = 0.76x fcd

x = 25
38

µrc
fs
fcd

t (11.9)

per unit width, where x is the height of the compression zone, and 0.80 and 0.95
are factors related to an approximation that the compression zone is fully plastic.
According to SIA 262:2003, the dimensioning value of the concrete strength

fcd =
1
1.5

ηfc fck , (11.10)

with

ηfc (
30
fck

)
1/3

≤ 1.0, (11.11)
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meaning in our case, fcd = 28.1 N/mm2. �e bending moment at plastic failure,
assuming the resultant of the reinforcement acts at 0.9t from the top, is

Mu = (0.9t − 0.4x)As/2 ⋅ fs

= ( 9
20

t − 1
5
x) µrc t ⋅ fs (11.12)

per unit width. �e second moment of area of the cracked section is (Naaman 2000)

Icr =
1
3
x3 + 1

2
nµrc t(0.9t − x)2 (11.13)

per unit width, where n = Es/Ecr, and ignoring the contribution of the reinforcement
on the compression side. �e corresponding stress, which we take to be the linear
elastic strength, is

fy =
Mux
Icr
, (11.14)

which is used as an upper limit during linear elastic analysis. �e linear elastic Von
Mises stress is used, assuming plane stress, so that

σv =
√

σ 21 + σ 22 + σ1σ2 . (11.15)

Partial factors are applied to the stresses in proportion to the self-weight and the live
load, to then check in the ultimate limit state (ULS) whether

1.2 ⋅ σv,0 + 1.5 ⋅ σv,t
fy

≤ 1.0, (11.16)

noting that the strength fy already included a material factor of 1.5.

Buckling

�e shell is checked using the buckling formula in equation (8.12), based on the linear
critical buckling load factor plincr /p, divided by the safety factor λs and multiplied by
the knockdown factor γk. Both factors are automatically calculated in the parametric
model, by implementing all the equations of Chapter 8.
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Prestress and strength

�e allowable prestress of the fabric is assumed to be 9 kN/m, taken as 6 % of the
fabric strength (Forster & Mollaert 2004). �e allowable stress, or fabric strength, is
assumed to be 30 kN/m, based on a material safety factor of 5 (Forster & Mollaert
2004).

11.2 Results

By varying span, shallowness and slenderness at regular intervals between the bounds,
160 shells and corresponding formworks were generated and analyzed. Each analysis
took only eight seconds. Figure 11.1 shows a sample result for all results generated
within the allowable values for span, shallowness and slenderness.

Figure 11.1: Sample result for 30 m span, shallowness of 5, and slenderness of 150. Results
include (a) displacements, (b) buckling mode, cable force (c) before and (d) a�er casting. (e)

Boundary conditions during analysis are schematically shown.

11.2.1 Mechanical limits

Figure 11.2 shows the required weight of a cable net per unit of surface area. As
expected, the weight increases with the span and thickness (as the slenderness de-
creases).
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�edimensions of two square hypars are indicated for reference: the 1968Ostseeperle
Restaurant in Glowe, Germany, by Ulrich Müther (Lämmler &Wagner 2010); and,
the 1955 Chapel of Nuestra Señora de la Soledad, or El Altillo Chapel, in Mexico City
by Félix Candela (Faber 1963).

�e governing limit for the shell structure itself is the buckling load factor. It occurs
roughly around a slenderness of 150. �at this limit corresponds with a speci�c
slenderness is not surprising when considering the critical buckling load in equation
(8.15). In this equation, the buckling load is proportional to the thickness t squared
over the radius of curvature R, similar to the slenderness squared. Note that many
shells mentioned in Chapter 2 are considerably thinner, up to a slenderness of 750.
�ese are aggregated hypars, suggesting that their boundary conditions allow for
larger buckling load factors.

�e application of a fabric formwork is limited by the allowable fabric strength and
prestress, which occurs around spans of 8 to 12 m. �e remaining feasible space is
limited (Figure 11.2).

For a cable-net formwork, the feasible space is larger. �e weight of two cable-
net roofs is indicated as a possible practical limit for construction of a cable-net
formwork: the 1972 Munich Olympic Stadion (Figure 2.41) and the 2011 London
Velodrome (Figure 11.2). If the latter’s weight is considered to be a limit, then a
cable-net formwork can be applied for spans of up to 20 to 25 m. For the former
reference project, this can be higher, up to 35 to 40 m.
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Figure 11.2: Cable weight per unit of surface area, relative to span and slenderness, for a
shallowness of 5 with trendlines. �e feasible space for a fabric formwork is bounded by limits
of shell buckling and fabric strength, for a cable-net formwork by shell buckling and cable

weight.
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Surprisingly, the shallowness does not fundamentally change these �ndings. For
instance, for a shallowness of 2, limits for the shell are similar. For most results, cable
forces and fabric stresses are only 10 and 20 % lower respectively.

11.2.2 Economy of the falsework

To investigate how the external frame compares to the sca�olding for a rigid form-
work, a dimensionless falsework ratio is proposed.

�e structural mass of the cable-net formwork is assumed to correlate with the
vertical reaction forces along the perimeter l times the average height, or the rise h
of the shell. �e vertical reaction force is the sum of the vertical force FH per meter
width and the force produced by a moment due to the horizontal force FV per meter
width. It is assumed that the external frame has a vertical slenderness of 1/8. As a
result, our �rst quantity,

c1 = (FH +
Fv ⋅ h
1/8 ⋅ h) ⋅ l ⋅ h = (FH + 8FH) ⋅ l ⋅ h. (11.17)

�e structural mass of a rigid formwork is assumed to correlate with the weight of
the shell times the volume underneath the shell, so that our second quantity,

c2 = ρg ⋅ t ⋅ A ⋅ h (11.18)

where ρ is the concrete density, g is the gravitational constant, and A is the footprint
of the shell.

Both quantities are in kNm, and their ratio c1/c2, is a dimensionless number. �is
falsework ratio turns out to be 21.3, independent of span or slenderness (Figure 11.3).
�is suggests that whatever the ratio of structural mass between both solutions is, it
does not change when a shell is longer or thicker.

Figure 11.3:Weight indicators for the falsework for a cable-net and a rigid formwork

360



11.2.3 Influence of optimization

Whether structural optimization can improve the established limits is investigated by
taking a shell near the reference projects in Figure 11.2: a span of 30 m, slenderness
of 150, and a shallowness of 5. �e optimization is performed as discussed in Section
7.2.2, using a genetic algorithm. �e hypar of uniform thickness is allowed to change
shape and thickness within its boundary conditions, while keeping volume constant.
�e minimum thickness is 40 mm. �e shell is optimized for the load factor with
or without an imperfection. �e imperfection is the �rst buckling mode with an
amplitude equal to the average shell thickness.

Table 11.1 shows that, in this case, neither objective produces a shell that is supe-
rior in both respects. �erefore, the shape and thickness optimization is unable to
fundamentally alter the limits shown in Figure 11.2.

variables performance
c t1 t9 t2 λ λ imp
[-] [mm] [mm] [mm] 103 ⋅[Nm] [-] [-]

hypar 0.0 200 200 200 14.8 6.8
variable 0.9 40 40 350 36.4 5.7
variable 0.0 40 60 460 10.7 15.7

Table 11.1: Initial hypar of uniform thickness, optimized for shape and thickness for load
factor with imperfection.

11.2.4 Sensitivities to errors

As a �nal result for the 30 m hypar, some of the inputs for the prestressed state are
altered to investigate sensitivity to errors. �e measured quantities are the maximum
node deviation and maximum force deviation; quantities that can be controlled
during construction. �e parameters that were varied are: the initial lengths, control-
ling the sti�ness and thus the internal forces; and, the applied concrete, controlling
the external forces. �e error is introduced uniformly, which is conservative. No
asymmetry or distribution of errors was checked. �e cable segments are 1/10th of
the span, so the errors in initial length are introduced along roughly 3 m segment
lengths.
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Figure 11.4:Maximum deviations in resulting force and node position, for decreasing or
increasing (red) initial lengths × 1 mm and (green) applied concrete thickness × 10 mm.

Figure 11.4 shows a certain range of errors, and resulting deviations. �e instability
that can be observed, is due to sagging of the net, as lengths of the cable segments
increase. Large errors would be di�cult to observe geometrically on site, yet quickly
translate into large deviations in forces. �is suggests that there is substantial room
for errors, but also that force measurements are the best way to register, and thus
control them.

If we allow a deviation of 1/1000th of the span, while avoiding any instability, the
load can be ± 40 mm and the initial geometry ± 2/3 mm/m. Alternatively, the forces
have to be measured and controlled to a precision of ± 20 kN at this scale, or 3 %
of the maximum force. �e latter corresponds with the 2 % accuracy used for the
successful construction of the second prototype in Section 10.2.

11.3 Conclusions

�e design process was implemented in a parametric model. Individual results were
generated within eight seconds, demonstrating its applicability to early parametric
design or optimization stages. Flexibly formed shells are limited by: the buckling of
the shell; and, depending on the type of formwork, the allowable fabric prestress, or
practical weight of the cable net.

For the given example, a fabric formwork and a cable-net formwork can be applied
to shells, with a slenderness of 150 and shallowness of 5, for spans of up to almost
10 to 15 m and up to almost 20 to 40 m, respectively. Ways to increase this range
are to decrease the shallowness, but mainly to allow for greater slenderness, by
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improving the buckling load factor in turn. Shape and thickness optimization of the
uniform hypar was unable to achieve the latter. �is means that the entire boundary
conditions need to be changed, and potentially considered in the optimization, as
was done for the case study in Chapter 12.

Based on a simple dimensional analysis, the structural mass of the �exible formwork’s
external frame is proportional to that of the weight of sca�olding and shoring of a
rigid formwork, independent of span or slenderness. �e proportion itself, expressed
in mass, has not yet been established as this would require a full design of a rigid
formwork and a �exible formwork for the same shell geometry. Reported cost savings
for �exible formworks are 25 % in several cases, indeed regardless of span, which
indicates that the proportion is in favour of �exible formworks (Chapter 3). In other
words, this suggests that although the mass and cost may scale linearly, exponentially
or however with size, the relative savings of a �exible formwork remain constant.

Errors in the initial geometry of a cable-net formwork have to be controlled through
precise fabrication, and subsequent measurements and corrections of the prestress.
�e resulting geometry is relatively insensitive to errors in the applied loads.
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[. . . ] very large spans in fact do not make much sense any more. A
large dimension in itself is no proof of quality. Similarly, the fattest, the
skinniest or the biggest woman [or man] is not the most attractive one.

—Heinz Isler, 1995, about the CNIT shell.





CHAPTER TWELVE

Case study: NEST HiLo

HiLo is a research & innovation unit within the NEST building demonstrating ultra-
lightweight construction and active building systems (Figure 12.1). HiLo is planned as
a 16 × 9 m duplex penthouse apartment for visiting faculty of Swiss federal research
institutes Empa and Eawag to be completed in 2018 in Dübendorf, Switzerland
(Figure 12.2). �e roof of HiLo is planned as a concrete thin-shell structure with a
unique shape and modest span, constructed on a cable-net and fabric formwork, and
its development was part of the present work1.

�e �nal design of HiLo was a collaborative e�ort of the Block Research Group
(BRG) and the Architecture and Building Systems Group (A/S), both at the Institute
of Technology in Architecture, ETH Zurich, joined by architectural o�ces Superma-
noeuvre and ZJA Zwarts & Jansma Architects. HiLo introduces several innovations
(Figure 12.3) (Block et al. 2017), and this chapter focuses on the development of the
roof.

�is chapter describes the geometry and structural design of the HiLo roof at the �nal
design stage submitted inAugust 2015, prior to the detailed engineering and tendering
(referred to as the “Bauprojekt” stage in Switzerland). Section 12.1 o�ers a description
of the concrete shell roof structure with emphasis on unique aspects such as its open
edges, sandwich section andmesh reinforcement. �e form �nding and optimization
of the roof geometry is described in Section 12.2. Parts of that process, the parametric
generation of the roof boundary and topology, were developed by ZJA as part of
the collaboration (Section 12.2.1 and 12.2.2). �e resulting formwork is discussed in

1�is chapter is based on Veenendaal, Bakker & Block (2015, 2017)
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Figure 12.1: NEST building as of May 2016, Dübendorf, Switzerland.

Section 12.3. More advanced structural analysis of the �nal roof, too computationally
demanding to include in the optimization, is discussed in Section 12.4. Results from
both the optimization and �nal analysis are presented in Section 12.5, before o�ering
some details on their implementation in Section 12.6 and conclusions in Section 12.7.

12.1 Structural description

�e roof of HiLo is an anticlastic, thin-shell structure to be constructed using a
prestressed, cable-net and fabric formwork. �e shell has a total concrete thickness
varying between 30 and 300 mm, 80 mm on average, features spans in the range
of 6-9 m and is supported on �ve “touch-down” points with free edges along its
entire perimeter. �e 157 m2 shell is built up as a sandwich composite consisting of
ferrocement or textile-reinforced concrete faces, and a rigid polyurethane (PU) core,
meaning the total structural depth ranging from 30 to 415 mm, 142 mm on average.
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Figure 12.2: Visualisation of �nal design stage of HiLo on the top �oor of NEST.

12.1.1 Thin, free edges

Unlike historical hypars with straight edges, HiLo’s roof shell has no edge beams, but
features thin edges, thickening towards the �ve supports. �e shell is not supported
by the facade mullions, which only transmit horizontal wind loads from the glazing,
via the mullions, to the shell. �e shell has no internal ribs, unlike traditional shells
composed of multiple hypars.

For single or gabled hypar roofs, reducing or entirely removing any edge beam
(possibly thickening the shell at the supports) decreases overall shell bending (Jadik
& Billington 1995, Ortega & Robles 2003). Although maximum displacements may
increase, they are not signi�cant compared to serviceability limits.

Kollár & Dulácska (1984) claim, based on a synclastic model test, that shells with
free edges exhibit global rather than local buckling. �ey may have increasing load
capacity a�er buckling, provided that internal forces can shi� to the interior and this
inner part is able to carry more load than the original load paths in compression.
Tomás & Tovar (2012) show results for hypars which become imperfection insensitive
if only the corners instead of the edges are clamped and supported.
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Figure 12.3: Key innovations and components of HiLo: a) the �exibly formed sandwich shell
roof with photovoltaics; b) the mezzanine level; c) a funicular �oor system; d) an entry level
with ribbon wall concealing utilities and services; and, e) a so�-actuated adaptive solar facade.

12.1.2 Sandwich

�e shell is subject to strict requirements for energy performance. �e required
U-value is 0.17 W/mK and the overall apartment is supposed to generate a 40-50 %
annual weighted energy surplus. �e roof is used as a solar collector for electrical
and possibly thermal energy on the outside, and as a low energy, hydronic heating
and cooling system on the inside, requiring the inside concrete surface to remain
exposed.

To minimize thermal bridging, the connection between the glass facade and shell
led to the present sandwich designs (Figure 12.4). Although intuitively the sandwich
would seem to present only structural bene�ts by increasing structural depth and
reducing sensitivity to external loads and imperfections, the di�erences in tempera-
ture and humidity on either side of the PU core lead to higher thermal loads and
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di�erential strains due to creep and shrinkage. For this reason, but also to reduce
complexity during construction, an alternative has been calculated in which the
sandwich only occurs along the glass and the interior part of the shell is a single layer
(Figure 12.4).

Figure 12.4: Roof section of HiLo with full sandwich, and alternative with sandwich locally
along glass facade (adapted from drawing by Supermanoeuvre)

12.1.3 Reinforcement

Due to the thinness of the shell and various unfavourable load cases and combinations,
the shell will locally act in bending and thus needs to be reinforced accordingly. �e
shell can be reinforced usingwoven (orwelded)meshesmade of ferrocement or alkali-
resistant (AR) glass�bre or carbon�bre textile reinforced concrete (TRC) (Figure
12.5). �is will allow us to maintain thinness, by following curvatures more easily
than traditional rebar, and requiring only minimal cover of 2 mm (ACI 549R-97).

Figure 12.5: Examples of ferrocement and carbon-�bre TRC sections, 50 mm thick, showing
dense mesh reinforcement (Eisenbach et al. 2014, Schneider 2011).
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�e decision for the �nal material and dimensioning of the reinforcement mesh
(steel, AR-glass, or carbon) will be made in the next phase. Due to its high in-plane
thermal conductivity and wide availability, ferrocement was originally favoured as
reinforcement for the thermally active and innovative roof. Potentially the materials
can be combined to improve thermal conductivity only for the interior part of the
shell, while suppressing it at the connection to the glass facade and at the exterior.

12.2 Form finding and optimization

�e design process for the roof consists of an integrated parametric model used
for evolutionary optimization of the shell, and subsequent analysis of its nonlinear
behaviour as well as the �exible formwork used for its construction. �e number of
criteria and variables changed throughout the design process, as the roof geometry
and its constraints were increasingly developed and re�ned. �e decision to shi�
from a single layer to a sandwich was made near the end of the design process, and
was mainly dealt with in the �nal analysis. Figure 12.6 explains the computational
design process of HiLo, consisting of form generation, structural analysis, and shape
optimization.

�e process consists of boundary, topology and form generation (Sections 12.2.1,
12.2.2 and 12.2.3) followed by load generation (Section 12.2.4) to allow for thickness
optimization (Section 12.2.5). �e shell geometry and mass is now �xed and can
be evaluated for further for cable-net forces (Section 12.4) as well as the amount of
glazing along its perimeter. �ese parameters were then used to inform the shape
optimization (Section 12.2.7).

�e geometry that is initially generated is maintained throughout the entire process,
acting both as the layout of the cable net and the mesh of the shell itself (apart from
triangulation, some nodes inserted to apply wind loads from the glass façade, and
subdivision for further analysis in Section 12.4).

12.2.1 Boundary conditions

�e shape of the roof is largely determined by the geometry of its boundary edges, and
the topology of the generating network. �e edge consists of four or �ve undulations,
one for each support, curving between each support position to the given height h
of the roof. Each half undulation is characterised by an amplitude a = h, period p,
and sharpness s (Figure 12.7),
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Figure 12.6:Work�ow of optimization and analysis.

z (t) = acos2 (t (x) π
2p

) (12.1)

where

t (x) = s ⋅ x + x
s ⋅ x + 1 (12.2)
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Figure 12.7: Boundary generation with vertical coordinate z from perimeter coordinate x
and roof height h. Each support is a parabola with width w and depth d. Between the
supports and corners, each half undulation has an amplitude a, sharpness s and period p.

In a �rst optimization, four or �ve support positions, determining p, the sharpnesses
s, and the roof height h, were parameters for the optimization.

�e boundary curves can extend below the foundation and can optionally be cut o�.
By doing this, the roof touches down on the �oor with a planar, curved footprint.
�ese are de�ned as parabolas with a certain width w and depth d; two additional
parameters for the edge shape (Figure 12.7). �e resulting space is required for
the exterior insulation, drainage, connections to the thin-�lm photovoltaics and
hydronic system, providing e�ective area for the supports, and ensuring that the
glass facade connects to the shell at angles of ±45° to allow for proper detailing. In
this case, the sharpness s can be determined from a height h, period p, width w and
amplitude a

s = − c + πn
n (c + 2πn − π) (12.3)

where

c = arccos (2h/a − 1) (12.4)
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and

n = 1
2
w
p

(12.5)

In the �nal optimization, the �ve support positions were �xed, leaving three pa-
rameters for optimization: width w, amplitude a, depth d, i.e. ��een variables for
optimization.

12.2.2 Topology generation

�e roof is then divided into �ve convex patches, determined by �ve points B i on
the shell’s boundary and three interior points S i (Figure 12.8).

Figure 12.8: Topology generation.

Each patch is then subdivided along approximately radial and concentric directions
with respect to the support positions. �e interior edges of the patch are divided into
an equal number of segments that are as close as possible to some desired, global
edge length. �is same number then subdivides the exterior edges of the patch. �e
resulting vertices are connected to the corresponding vertices along the interior
edges. Starting at the outermost exterior vertices, concentric edges are created that
follow the interior boundary of the patch, crossing all radial edges in between. For
undulations that are cut o�, the exterior vertices are divided evenly over the three
exterior curve segments, based on their relative lengths. �e parabolic segments get
at least three vertices, to avoid degrading them into straight lines.
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12.2.3 Form finding

From these boundary conditions, a suitable, anticlastic shape is generated using the
linear force density method (Schek 1974). To minimise the number of additional
variables for optimization, the force densities throughout the network are determined
by interpolating nine or eleven values for four or �ve supports respectively (Figure
12.9). �e total number of variables then varies between 18 and 26 (Table 12.1).

single multi
August 2014 May 2015

no. of supports n 4 5 5
support location x n 4 5 -
support sharpness s n 4 5 -
support width w n - - 5
support depth d n - - 5
support amplitude a n - - 5
height of roof h 1 1 1 -
force densities q 2n + 1 9 11 11
total no. of variables 18 22 26

Table 12.1: Number and type of variables for optimization for four and �ve support points in
initial stage (4n + 2), and �ve supports in �nal stage (5n + 1).

�e ratio of allowable force densities is limited to 1:20, to create reasonable shapes
without too abrupt changes in curvature and resulting forces. In the case of cut-o�
supports, the network potentially curves in on itself. �is is remedied by calculating
force densities of the network’s triangulated projection using the linear natural force
density method (Pauletti & Pimenta 2008). �is tends towards a minimal surface of
our projection, avoiding overlaps, and thus any inward curving. �ese force densities
are then used in a second form-�nding procedure, in which the shape is also partially
constrained to the �rst form-found mesh.

12.2.4 Load generation

At this point, the shape for a possible roof design can be generated and must now be
evaluated to allow optimization. For each shape, loads based on SIA 261:2003 are
automatically generated to be applied to the roof as the starting point for structural
evaluation. �ese loads include:

• the self-weight of the concrete (24 kN/m3);
• dead loads from the integrated shell (0.3 kN/m2);
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Figure 12.9: Force densities interpolated from eleven values.

• live loads for maintenance on the roof (0.4 kN/m2);
• thermal loads due to the embedded hydronic system for a minimum tempera-
ture of 0 °C for optimization and -20 °C for �nal analysis (Figure 12.10);

• snow loads (µk × 0.9 kN/m2 (Figure 12.11), and;
• wind loads (Cp × 1.07 kN/m2) (Figure 12.12).

Thermal loads

�ermal actions were de�ned on the basis of CFD models by A/S.

�e initial optimization assumed a single layer shell with an ambient temperature of
0.0 °C and shell temperature of 33.0 °C due to the hydronic heating system.

Further analysis was based on the sandwich shell, which is partially insulated and
also hydronically heated. �e thermal expansion of concrete αT = 10 ⋅ 10−6 K−1 (SIA
261:2003, art. 7.1.5). Only in-plane temperature changes were considered at this stage,
excluding temperature gradients along the individual layers.
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�e thermal actions are calculated di�erently for the serviceability limit state (SLS)
and the ultimate limit state (ULS) (Table 12.2). In both cases, thermal conductivity for
the concrete is 1.5 W/mK and 0.022 up to 0.035 W/mK for the PU (outer insulation
and sandwich core). In SLS, the temperatures in the shell are calculated based on
an average ambient temperature of 9.4 °C based on local weather �les. In ULS, the
temperatures are calculated based on an assumed extreme ambient temperature of
-20 °C.

temperature exterior outer shell inner shell interior di�erence
single shell (SLS) 0.0 33.0 33.0
sandwich (SLS) 9.4 17.7 27.3 21.7 9.6
sandwich (ULS) -20.0 2.5 28.4 20.0 25.9

Table 12.2: Temperatures of the inner and outer shell for maximum PU core thickness, as
inputs for thermal action in SLS and ULS.

Temperatures for the outer shell were calculated from these results for varying thick-
ness of the sandwich insulation. �e thicker the insulation, the higher the tempera-
ture di�erence between both concrete layer, and thus the resulting thermal action
on the shell (Figure 12.10).

Figure 12.10:�ermal actions for single and sandwich shell.
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Snow loads

�e snow shape factor µk varies between 0 and 0.8 depending on the roof angle
(SIA 261:2003) and multiplied with a snow pressure sk = 0.8 kN/m2 (Figure 12.11).
Accumulation of snow at the supports was omitted, pending further detailing of the
supports in the detailed engineering phase.

Figure 12.11: Snow loads qk depending the shape factor µk,1 according to SIA 261:2003.

Wind loads

To obtain the wind loads, the wind pressure qp = 1.07 kN/m2 is multiplied by shape
factors, depending on the shape of the building, and the direction of the wind, and
applied normal to the surface of the shell. �e wind pressure assumes a Type III area,
initial pressure of 0.9 kN/m2 and building height of z = 20 m (SIA 261:2003).
Two governing wind load cases were de�ned: one for wind suction, one for wind
pressure, both in the same direction (Figure 12.12). �ey assume the building is
closed, as any internal pressure is not governing in our case. Half of the wind load
on the glass facade is also taken into account.
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Figure 12.12:Wind pressure zones and resulting load cases.

• �e wind suction load case assumes that the entire shell roof, which locally
curves down to be part of the facade, is categorized as roof (Figure 12.12). Zone
A is assumed to apply to the underside of the shell, outside the glass facade.
�e resulting local addition of shape factors m and A leads to a factor of -2.55,
which is perhaps overly conservative (Table 12.3).

• �e wind pressure load case assumes the steeper parts of the shell are a facade.
�e shape factors for facade A (now the topside of the shell) and roof m are
interpolated depending on the local angle (between 10° and 90° from the
horizontal plane) (Figure 12.12). �e shape factors are the same as for the
previous wind load case (Table 12.3).

A B C D E m
-0.75 -0.75 0.75 -0.3 -1.05 -1.8

Table 12.3:Wind shape factors where positive load is towards (pressure) and negative load is
away (suction) from the building envelope (SIA 261:2003).
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Load combinations

Load combinations were de�ned using reduction factors ψ and load factors γ in
Table 12.4 following SIA 260:2003 and assuming a category H intended for “roofs”.
�e reduction factors for snow loads are calculated based on a height of 440 m above
mean sea level for Dübendorf. Load cases are categorized as “occasional” (which are
used together with a variable leading action), “frequent” (which occur more than a
certain limiting value) or “quasi-permanent” (which occur at least half of the time,
or as an average over time).

limit state self-weight dead thermal snow wind live
SLS occasional 1.0 / ψ0 1.0 1.0 / 0 1.0 / 0.6 1.0 / 0.86 1.0 / 0.6 1.0 / 0.0
SLS frequent ψ1 and ψ2 1.0 1.0 / 0 0.5 / 0 0.43 / 0 0.5 / 0.0 0.0
SLS quasi-permanent ψ2 1.0 0.7 (1.0) 1.0 (0) 0 0.0 0.0
ULS load factor γ 1.35 / 0.8 1.35 / 0.8 1.5 / 0 1.5 / 0 1.5 / 0.0 1.5 / 0.0
CLS safety factor λs 1.75
limit state LC self-weight dead thermal snow wind live
SLS quasi-permanent 0 1.0 0.7 0.2 / 0
SLS occasional 1 1.0 1.0 1.0 / 0 1.0
SLS occasional 2/3 1.0 1.0 / 0 1.0
SLS occasional 4 1.0 1.0 1.0 / 0 0.86 1.0

ULS

5 1.35 1.35 0.6 / 0 1.5
6/7 0.80 0.6 / 0 1.5
8 1.35 1.35 0.6 / 0 0.86 1.5
9 1.35 1.35 1.5 / 0 0.86

Table 12.4: Reduction factors ψ, (un)favourable load factors γ (SIA 260:2003) and safety
factor λ (IASS 1979). Load combinations (LC) with and without thermal loads used. Leading

action in bold.

�e occasional load combinations are used for checks in the SLS against allowable
de�ections and crackwidth. �ey are also the starting point for limit load calculations
to establish the load factor in the critical limit state (CLS).�eULS load combinations
are used to check against allowable stresses.

�e quasi-permanent load combination is used for the determination of creep and
shrinkage e�ects. �e dead loads and thermal loads are altered (0.7 and 1.0 instead
of 1.0 and 0.0) to re�ect the actual long-term load on the shell. �e load is then
increased to the occasional SLS or the ULS load combinations.
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12.2.5 Thickness optimization

By redistributing the material in the shell, it is possible to reduce the total volume of
required concrete, even though the maximum stresses stay within the same limits.
�e optimization tries to approach a given maximum de�ection of s/500 = 18 mm,
while reducing thicknesses throughout the structure and keeping within a 20 MPa
stress limit. �e linear elastic sti�ness was reduced to only E = 5000 MPa to approxi-
mately account for cracking and creep in the design. �e optimization is done for
all SLS load combinations, as those in the ULS were found to not govern the results.
�e presented result has a minimum and average thickness of 30 and 80 mm, and a
total weight of 29 metric tons.

12.2.6 Best-fit optimization

�e cable-net forces have to be found such that, under given loads of the wet con-
crete, the resulting concrete shell takes the form of the target shape (Van Mele &
Block 2010). �e topology and shape of the cable net (Sections 12.2.2 and 12.2.3) is
the basis for triangulated mesh of the shell (Section 12.2.4 and 12.2.5). To enforce
reasonable bounds on these forces under load (4-50 kN along the perimeter), the
resulting constrained linear least squares problem can be written as a quadratic
program. Assuming the bounds have not allowed us to �nd an exact match with the
target shape, we compute the sum of squared deviations, which are used as target
for optimization. �e constrained linear least squares solver o�ers an initial esti-
mate of the force distribution, showing how di�erent solutions compare, but within
reasonable computational time. A more robust nonlinear algorithm, suggested by
Van Mele et al. (2014), is applied to the �nal geometry to obtain the closest-�t �t in
the detailed engineering and tendering phase, as the topology of the formwork may
change depending on input from the future contractor.

12.2.7 Shape optimization

�e roof was optimized in two rounds: initially, a single-criterion optimization;
and then a �nal multi-criteria optimization. �e optimization was carried out for a
monolithic concrete shell, and the sandwich section was taken into account in the
subsequent structural analysis (Section 12.4).
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�e �rst optimization minimized mass, proportional to the elastic bending energy E,
subject to preliminary stress and de�ection constraints (20 N/mm2 and 30 mm). �e
energy is a function of the shape f = f (x , s, h, q), with 18 or 22 variables (nine or
eleven boundary parameters plus nine or eleven force density parameters, for shells
with four or �ve supports respectively) (Table 12.1).

�is stage studied di�erent boundary conditions (positions and number of supports
as well as roof height), and their relative in�uence on the potential to minimize the
mass. �e problem is to:

min. E ( f (x , s, h, q)) (12.6)
subject to

σ ≤ 20 N/mm2 ,
δ ≤ 30 mm,

0.11 ≤ x4 ≤ 0.45,
0.60 ≤ x3 ≤ 0.90,
1.10 ≤ x2 ≤ 1.90,
2.10 ≤ x1 ≤ 2.43,
3.45 ≤ x5 ≤ 3.90,
0 ≤ s1. . .5 ≤ 10,
0 ≤ h ≤ 5, and
1 ≤ q1. . .11 ≤ 10.

�e bounds on variables x were determined to avoid any supports close to the corners,
and keep any supports within the architecturally and functionally preferred support
zones. �e bounds on variable s were subjectively set to avoid extremely steep or
shallow edge curves. �e bounds on variable h were determined by a minimum
ceiling clearance and a maximum allowable roof height.

�e second and �nal multi-criteria optimization, subject to a preliminary stress
and de�ection constraints (20 N/mm2 and 1/500th of the span L), minimized four
criteria: internal elastic energy (proportional to mass) as before; the buckling load
factor (lowest, positive value); deviations of the cable net to the target shape; and,
surface area of glazing. A ��h measure of the amount of head clearance below
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the roof was also calculated to compare results, measured as the sum of squared
lengths of all nodes higher than 2.15 m. �ese criteria are all a function of the
shape f = f (w , d , a, q) with 26 variables (��een boundary and eleven force density
parameters for a shell with �ve supports).

�is stage determined the �nal design as it was submitted to the authorities for
building permission (see also Sections 12.2.1-12.2.3). �e problem is to:

min. E ,−λ, ∆zT∆z,A, (12.7)
as functions of f (w , d , a, q)

subject to
σ ≤ 20 N/mm2 ,
δ ≤ s/500,
1.2 ≤ w1 ≤ 2.0,
0.9 ≤ w2.. .5 ≤ 1.2,
0.42 ≤ d1 ≤ 0.82,
0.45 ≤ d2.. .5 ≤ 0.75,
7.5 ≤ a1 ≤ 9.0,
4.4 ≤ a2.. .5 ≤ 9.0,
1 ≤ q1. . .5,11 ≤ 20, and
1 ≤ q6.. .10 ≤ 10.

�e bounds on variables w, d and a, were set to maintain various requirements
related to space for insulation and drainage on the exterior, and to angles between
the shell and the glass facade on the interior.

12.3 Formwork

A feasibility check was carried out on a possible formwork frame. �e frame is
designed using three element types:

• tubular steel ring (S235, RO 273/2.6, E = 210 GPa);
• glulam beams (GL24h, 80x300 mm, E = 11.6 GPa): and,
• plywood plates (C24, 27 mm, E = 11 GPa).
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Figure 12.13: Four criteria: elastic energy (proportional to mass, shown as thickness e),
buckling load factor λ for LC 0 (showing �rst positive buckling mode with de�ection w),
cable-net deviations (showing constrained forces F under load), and surface area A of clear

glazing.

�e elements in timber were based on typical sizes and Young’s moduli provided by
an earlier prospective contractor (Verhoeven Timmerfabriek).

Figure 12.14 shows the overall design of the frame. �e ring follows the edge of
the cable net and has two glulam struts in the middle. �e ring is supported by
vertical glulam members spaced no more than 2.2 m apart. Horizontal members are
positioned at mezzanine and roof level. �e outer ends of the frame are braced with
plywood sheets. At the back the structure is supported at mezzanine level, close to
the backbone slab at parapet level. Diagonal members brace the back against the
backbone parapet. �e analysis assumes all supports are �xed and that de�ections
should be 10 mm or less (in order to maintain control over the �exible formwork).

Forces from the best-�t optimisation are introduced as external point loads on the
frame, meaning the structural model of the tensioned net is not coupled to that
of the frame. �ose forces in turn are based on the weight of the lower shell, and
currently exclude the weight of the net itself. �e net has been re�ned to an average
370 mm segment length, with forces no higher than 25 kN.�e average of the 274
forces acting on the frame is 8.7 kN. �e only other applied load is the self-weight of
the frame, and no load factors have been applied.
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Figure 12.14: Design of the formwork frame, resulting reaction forces on the NEST building
while displacements are kept within 10 mm.

�e overall weight of the frame is 6.6 tons. �e current concept excludes use of any
sca�olding, temporary roof structure, permanent steel and timber framing inside
(e.g. the mullions), leaving room to further optimise the formwork frame.

�e design and materialization of the formwork has been changing substantially
since the �nal design stage a�er obtaining the building permit. �ese ongoing
developments are outside the scope and work of this thesis.

12.4 Structural analysis

�e subsequent structural calculations follow a combination of building codes:
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• SIA 262:2003, intended for conventional reinforced concrete, if and whenever
possible;

• EN 1992-1-1:2004, which elaborates on creep and shrinkage formulas used in
SIA 262:2003;

• ACI 549R-97 and ACI 549.1R-93 for aspects related to ferrocement; and
• IASS 1979, for aspects related to thin concrete shells, requiring a stability
analysis (Section 8.7).

�is strategy is possible in Swiss code, as SIA 260:2003, art. 0.3 allows exceptions to
code, “provided they are well founded theoretically or experimentally, or justi�ed by
new developments and new knowledge”.

Because the research unit will be replaced a�er 5-10 years, the reference period for
design is conservatively put at 20 years. Load combinations are according to Section
12.2.4.

12.4.1 Boundary conditions

As mentioned, the shell is supported on �ve locations. �ose at the rear are close to
the backbone, and assumed �xed. �ose in front are supported on a cantilevering,
prestressed concrete �oor slab, which are modelled as springs. �e spring sti�nesses
were provided by the structural engineers of the NEST building. One support is
modelled as a horizontal spring as well to account for the local �exibility of the
supporting steel frame. A linear elastic model of the shell including the cantilevering
�oor slab of the NEST model was used to compute a second set of spring sti�nesses,
which were used as a check.

12.4.2 Limit states

�e shell was checked against the following requirements in the serviceability limit
state (SLS), ultimate limit state (ULS) and critical limit state (CLS):

• de�ections (SLS) for occasional live loads should be less than 1/500th of the
span s, i.e. 18 mm for the shell, and 1/300th of twice a cantilever, i.e. 60 mm
for the cantilevering slab supporting the shell at the front (SIA 260:2003), and
along the glass facade they are prescribed to be less than 10 mm;

• concrete crack widths (SLS) may not exceed 0.1 mm (ACI 549R-97) or related
steel stress may not exceed 420 MPa (IASS 1979):
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• stresses (ULS) should not exceed the material yield strengths or strains;
• buckling (ULS) with decreasing post-buckling capacity may not occur; and,
• load factors (CLS) should be equal or higher than a safety factor (λs ≥ 1.75)
that depends on the type of post-buckling behaviour (IASS 1979).

12.4.3 Material properties

Due to the innovative nature of the roof, it was crucial to maintain su�cient freedom
for its future contractor and the design team to consider di�erent strategies to apply
and reinforce the concrete shell. For this reason, the �nal design of HiLo was checked
for a range of concrete strengths and three types of reinforcement material.

Concrete

�e concrete was modelled as a C90/105 according to SIA 262:2003 with correspond-
ing yield strengths, but a parametric study was carried out as well for a range between
C35/45 and C90/105 concrete, to inform the detailed engineering phase. �e higher
C90 concrete strength was primarily chosen based on the resulting creep and shrink-
age behaviour according to code, and given previous experience with viscous and
�ne concrete mixes, which exhibit high strength (Veenendaal & Block 2014b). For
reference, examples of cable-net formed shells from the early 1960s used concrete
comparable to strength classes between C45/55 and C50/60 (Sections 3.7.3 and 3.7.4).

Table 12.5 lists relevant properties for the upper and lower limit strength classes,
C35/45 and C90/105.

C35/45 C90/105
E-modulus Ec [N/mm2] 34’000 44’000
compressive strength fcd [N/mm2] 22.2 (15.8) 41.6 (40.5)
yield tensile strength fctd [N/mm2] 2.91 4.55
yield strain εy [‰] 2
ultimate strain εu [‰] 3
Poisson’s ratio ν [-] 0.2
density ρ [kN/m3] 24

Table 12.5:Material properties for concrete from SIA 262:2003 with values from ACI 549R-97
in brackets for comparison.
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Although the compressive strength fck can be 25 % higher a�er 20 years according to
SIA 262:2003, or 26-48 % a�er 3 years according to IASS 1979, this was not (yet) taken
into account. �e dimensioning value of the concrete tensile strength is calculated
from SIA 262:2003, art. 4.4.1.3,

fctd = kt fctm = 0.91 ⋅ 5 = 4.55 N/mm2 (12.8)

where

kt =
1

1 + 0.5t =
1

1 + 0.5 ⋅ 0.2 = 0.91 ≤ 1.0 (12.9)

and t is the smallest dimension of a tension chord in m (conservatively taken to be
200 mm, and arguably could be 30 mm).

According to code, concrete and reinforced concrete weigh 24 and 25 kN/m3 respec-
tively, while, according to literature, that of TRC is around 23.5 kN/m3.

Table 12.6 shows the creep coe�cients and drying shrinkage strains for the faces
and core of the roof ’s sandwich section. �ese parameters were applied to the quasi-
permanent load combination in forty incremental steps, simulating 20 years of creep
and shrinkage. �is state was then used for further application of the occasional SLS
and the ULS load combinations.

For concrete, the values are calculated with equations in Sections 8.7.2 and 8.7.3.
Following SIA 262:2003 (2004), autogeneous shrinkage is not included yet, pending
development and testing of the actual concrete mix. �e current values assume that
the shell remains in the formwork while curing for 28 days, and that the average layer
thickness is 50 mm. Creep and shrinkage is also dependent on relative humidity. �e
inner face of the sandwich is exposed on one side and has a relative humidity of 40 %,
while the outer face is completely enclosed and has a relative humidity of 60 %. �ese
values were calculated based on the required U-value of 0.17, the ambient, average
relative humidity of 50-95 % for nearby Zürich Airport, and a client requirement of
30-60 % on the interior.

Polyurethane

�e high density PU is modelled based on linear elastic properties from suppliers:
E = 300 MPa, fy = 20 MPa, ρ = 600 kg/m3.
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For the creep of the PU very little is known, and for now is taken from Garrido et al.
(2014), who investigated rigid PU foam for sandwich panels, though of much lower
density. A�er twenty years,

φ = 0.11 ⋅ (24 ⋅ t)0.25 = 0.11 ⋅ (24 ⋅ 20 ⋅ 365.25)0.25 = 2.25 (12.10)

where t is the time in days (see Table 12.6). �e in�uence on the results is minor, as
the sti�ness of the PU is much lower than the concrete.

inner face core outer face
creep coe�cient φ [-] 1.06 (0.76–1.31) 2.25 0.81 (0.76–1.31)
shrinkage strain εcs [‰] -0.19 (-0.63) - -0.10 (-0.38)
relative humidity RH [%] 40 - 60

Table 12.6: Creep and shrinkage of concrete and PU foam from SIA 262:2003, EN
1992-1-1:2004 and Garrido et al. (2014). Values from IASS 1979 in brackets for comparison.

Reinforcement

�e steel type, B500A, was chosen based on its similarity to the steel properties
mentioned in ACI 549.1R-93. �emesh layers are 1 mmdiameter, with 13mm spacing,
so 60 mm2/m per direction, with up to 12 layers per concrete face. Governing load
cases were checked for TRC as well to inform the detailed engineering phase. Table
12.7 lists the properties for all three types of reinforcement materials. �e yield
strain, not provided in literature, was calculated by assuming a bi-linear stress-strain
curve, and thus dividing the E-modulus by the ultimate tensile strength. �e yield
tensile strength was de�ned to be 99 % of the ultimate tensile strength, to improve
convergence of the �nite element program So�stik.

B500A glass carbon
E-modulus Es [N/mm2] 205’000 (200’000) 70’000 235’555
yield tensile strength fy [N/mm2] 435 (450) 455 745
ultimate tensile strength fctd [N/mm2] 457 460 753
yield strain εy [‰] 2.12 (2.25) 7 3
ultimate strain εu [‰] 20 25.8 16.5
material factor [-] 1.15 1.30 1.20
density ρ [kN/m3] 78.5 19.0 28.6

Table 12.7:Material properties for steel (SIA 262:2003), glass and carbon meshes (Hegger et al.
2007, Hegger & Voss 2008). Values from ACI 549.1R-93 in brackets for comparison. Material
factors for glass and carbon based on those for GFRP and CFRP (�b Bulletin No. 14 2001).
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�e reinforcement design is automated by So�stik and follows the relevant limits
set in Table 12.7 and Section 12.4.2. In addition, the orientation is based on the local
steepest descent of the shell. �e procedure determines the reinforcement based
on the linear SLS and ULS load cases and the limit on crack width, selecting the
governing quantity for each element. �is design is then used in subsequent physically
nonlinear analyses (PNL, GPNL). Both the orientation and reinforcement are very
locally determined (Figure 12.15), so their distribution is unrealistic, given that the
actual reinforcement will be based on larger patches related to cutting patterns. As
such, these results are intended as a starting point for further reinforcement design.
�e outer shell is more heavily reinforced than the inner shell, suggesting that the
shell is sti� enough to restrain contraction of the concrete due to the cold. �e outer
concrete cracks and therefore relies more heavily on reinforcement.

12.4.4 Imperfections

It is assumed that the initial imperfection has the same shape as the �rst positive,
globally acting buckling mode (Figure 12.16), with a magnitude equal to the initial
imperfection w0.

�e total imperfection is the sum of the calculable imperfectionw′
0 and the accidental

imperfection w0" (IASS 1979). �e former is the maximum de�ection obtained for
a service load combination using linear elastic analysis. As an upper limit we can
take the allowable de�ection w′

0 = 18 mm (Section 12.4.2). �e latter is the accidental
imperfection due to erection inaccuracies. Following the example of Tomás & Tovar
(2012), Section 8.7.1 presents an overview of how imperfections have been calculated
for shell structures, and the most conservative combination of these formulas has
been taken here, such that

w0 = w′
0 +w′′

0 = 39 mm, (8.28)

where

w′′
0 = 0.1t +

tαf
2 (1 + β−2s ) , 21mm, with (8.24)

βs = 0.001
√
R1R2
t

= 0.13 (8.26)
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Figure 12.15: Reinforcement per layer as designed by So�stik.

in which αf = 6 for a shell built using slipform (assumed to be similar to the cable-net
and fabric formwork; αf = 1 for rigid formworks, αf = 12 for airforms), t is the
shell thickness, and R1 and R2 are the principal radii of curvature of the shell. It
is assumed that the (area weighted) mean values can be taken, meaning that the
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Figure 12.16: First ten positive buckling modes, with the ��h mode taken as the shape for the
imperfection.

thickness of the sandwich t = 140 mm, and principal radii R1 and R2 are 25 m and
14 m respectively (Figure 12.17). Note that the present choice of αf = 6 predates this
thesis’ �nal recommendation to set αf = 12 (Section 10.6). �e present result is still
accepted as the total imperfection was conservatively calculated.
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Figure 12.17: Curvatures and sandwich thickness.

12.5 Results

�e two stages of design optimization led to a design whichmet various requirements,
while staying within structural limits.

Further detailed engineering of the roof will depend on development of the speci�c
concrete mix, method of concrete placement, more detailed reinforcement layout
and so on.

Initial, single-criteria optimization

Figure 12.18 shows the results from the initial broader optimization varying position,
height and number of supports, identifying greatest potential for structural and
energy performance. Resulting shapes were analysed for mechanical properties
(displacements, buckling load factor), geometric properties (thickness, surface area,
enclosed volume, glazing surface), and total annual radiation.
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Figure 12.18: Results from sixteen early optimisations (16× 100 generations, 100 shells each),
with A1 and A2 selected for further development.

Based on initial optimization results, solutionsA1 andA2were chosen as the direction
for further development. Main issues were the lack of head clearance at mezzanine
level and vertical position of the supports in the back. �e clearance was addressed
by including it as a metric for evaluation, raising the roof level, and changing the
mezzanine walkways to allow more space around the supports.

�e vertical position of the supports was set to be mezzanine level as in A2, to
allow connection to the mezzanine and supporting building structure, and increase
curvatures of the shell.

Final, multi-criteria optimization

Figure 12.19 shows the results from the �nal multi-criteria optimization, weighing
structural and energy performance against constructional considerations. �e four
criteria were internal elastic energy (proportional to mass), GNL buckling load factor
(lowest, positive value), deviation of cable net to target shape, and surface area of
glazing. A ��h measure of the amount of head clearance below the roof was also
calculated to compare results. �e optimization was carried out for a monolithic
concrete shell, and the sandwich section was taken into account in the subsequent
structural analysis.
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Figure 12.19: Projections of Pareto front from �nal multi-criteria optimization based on
buckling load factor, elastic energy (proportional to mass), cable-net deviations, and glazing,
showing a measure of head clearance below the roof as well. Limits on objective values shown

as dotted lines.

Figure 12.20 shows the front elevation and lower �oor plan of the �nal design, which
satis�es the, sometimes con�icting, objectives seen in Figure 12.19, andwas submitted
to authorities for building permission.

Displacements and steel stresses

�e structural capacity of the shell is limited by the steel stress in both SLS ≤ 420
MPa and ULS ≤ 457 MPa.
�e sandwich causes di�erential temperature and humidity, and thus di�erential
creep and shrinkage strains, as well as thermal actions. �e amount of creep and
shrinkage seems to be the main determinant of the shell’s capacity. �e shell shows
very small displacements, less than 10 mm in SLS, and well below any limits. In fact,
the sti�ness of the shell is so substantial, that the concrete acts as in a restrained
manner, with cold temperatures and subsequent contractions leading to micro-
cracking throughout, rather than deformations.
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Figure 12.20: Front elevation and lower �oor plan with main dimensions and location of
supports in �nal design.

As a result, maximum steel stresses are negligible, unless thermal action (167–246
MPa in SLS, 240–438 MPa in ULS) or only creep and shrinkage is included (308–354
MPa in SLS, 330–381 MPa in ULS).
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Textile reinforcement stresses

Several governing load combinations were analyzed again, but with properties for
carbon orAR-glass for the reinforcement instead of B500A steel. All other parameters
were kept the same, including those controlling the reinforcement design (limits on
cross-sectional area, crack width, etc.).

�e comparison showed that the use of carbon or AR-glass doesn’t signi�cantly
in�uence the overall sti�ness, strength or stability of the shell, as governing values
from previous results stay in the same order of magnitude. �e most obvious dif-
ference is the stresses and strains in the reinforcement, which di�er relative to the
speci�c material strength: for steel 354/500 = 70 %, for carbon 746/753 = 99 % and for
AR-glass 138/460 = 30 %. �is is likely due to the strength to sti�ness ratio of these
material varying as well. �e stresses in the carbon�bre are close to the strength,
requiring some further design optimization in order to reduce them to a comparable
level as to that of the steel.

Load factor

�e structural capacity of the shell is limited by a minimum load factor in CLS ≥
1.75. Figure 12.21 plots the CLS load displacement diagrams for LC 1 and 4 with
increasing nonlinearities, revealing the roughly bilinear behaviour of the shell, and
the improving e�ect of thermal action on the load factor (Figure 12.21, blue versus
red lines). �is suggests the thermal action acts as a form of prestress. While the
linear load capacity is in the order of 1000, the lowest load factor is only 3.0, though
still more than the minimum requirement of 1.75.

�e long-term e�ect of creep and shrinkage is more pronounced when excluding
thermal action, in which case the load factor (the shell’s capacity) is reduced by 17-35
%. Note that fully excluding thermal action would not be realistic, given that some
thermal gradient will always exist for the roof, even if the hydronic system were to
fail. Including thermal action, the opposite e�ect is seen in some cases, meaning the
capacity actually increases. �is suggests that the 25-50 % reduction due to creep ob-
served in shallow hypars by Gallegos-Cazeres & Schnobrich (1988) is a phenomenon
applicable to a much larger range of anticlastic shell shapes, including ones that do
not �t the de�nition of shallowness (Section 8.2.4). �e e�ect of imperfections is
almost inverse, as it is most pronounced when including thermal action, reducing
capacity by 15-32 %, but much lower reductions are seen when excluding thermal ac-
tion. Note that the magnitude of the imperfections is conservatively chosen (Section
12.4.4).
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Figure 12.21: Load-de�ection diagram for corner point for LC 1 and LC 4 without thermal
loads, showing in�uence of various nonlinearities. LIN = linear, NL = nonlinear, P =

physically, G = geometrically.

Concrete strength

�e structural analysis so far assumed a C90, comparable to concrete used for several
prototypes. However, the precise mix is to be developed in the next phase, and to
allow more freedom in doing so, the in�uence of lowering the strength has been
investigated. �is has been done only for the governing load factor, so 3.0 from CLS
LC 4.
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Figure 12.22: Trendlines for reducing the concrete strength while keeping the creep and
shrinkage properties the same or not.

�e concrete strength was lowered while updating the creep and drying shrinkage
strains. In this case, it is possible to reduce to a C70. �e cement supplier claimed that
the creep and shrinkage properties can be tailored. As an extreme, when assuming
that the total, actual shrinkage remains identical to that of drying shrinkage for C90
from SIA 262, then the concrete can be reduced to a C35. �is in fact shows how
sensitive the shell’s capacity is to long-term e�ects and to a much lesser degree to the
material strength.

Single shell interior

A full set of calculations was carried out on a roof shell in which the sandwich
occurs only along the glass facade, and the interior is a single shell (Figure 12.4). �is
alternative is potentially more cost e�ective as it halves the number of concrete and
insulation layers for a large part of the roof. Structurally speaking, the behaviour
is substantially altered, not only because the structural depth is reduced, but also
because the di�erence in thermal action, creep and shrinkage is avoided between the
upper and lower part. �e creep and shrinkage values for the lower sandwich shell
were taken for the single shell, but the thermal actions were more smoothly graded
towards the edges.
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Results show that the single shell has lower or comparable stresses, and less rein-
forcement, but on the other hand is more susceptible to thermal actions and wind
suction, leading to lower load factors. Where thermal actions had a positive e�ect on
the load capacity of the sandwich shell, the opposite seems true for the single shell.
�erefore, the single shell option has substantially less room to optimize the material
properties of the concrete.

Post-buckling behaviour

As a �nal check on the post-buckling behaviour, Kollár (1969) and Kollár & Dulácska
(1984) recommend to plot the displacement against the displacement over the load,
a so-called Southwell plot. Figure 12.23 is a plot of LC 4 including thermal action
and imperfection. �e load P is taken to be equal to the total vertical reaction force.
A straight line would indicate constant post-buckling behaviour; and an upward
curving line (as in our case) indicates increasing post-buckling behaviour (referred
to as “case 1” by IASS 1979). �is con�rms that a factor of safety λs of 1.75, rather
than 2.55 for decreasing post-buckling capacity (“case 2”) has to be achieved. �e
factor of 2.55 was established by following Section 8.4.

�e �rst part of our plot (up to 12 mm displacement) is unusual and is a result from
So�stik’s inability to load step thermal actions (meaning the thermal action is always
included with a load factor of 1, also distorting the rest of the plot).

Figure 12.23: Load-de�ection diagram and Southwell plot for LC 4 with imperfection, and
thermal actions included, revealing increased post-buckling capacity.
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12.6 Implementation

�e entire design process was implemented in Grasshopper for Rhinoceros. Several
plug-ins for Grasshopper were included: Karamba for structural analysis and thick-
ness optimization, and Octopus for multi-objective optimization. �ermal actions
were based on calculations carried out in Energy2D and ANSYS by A/S. Custom Iron-
Python components were written to communicate with external CPython scripts; the
shape generation of the shell and calculation of prestresses in the cable-net formwork,
the latter using the CVXOPT library’s QP (quadratic program) solver to solve the
bounded least-squares problem.

�e shell was subsequently evaluated for various additional nonlinearities in So�stik,
as the present version of Karamba does not include layered or volume elements to
model the sandwich, nonlinear material models, or third-order geometric nonlinear-
ity to evaluate post-buckling behavior. However, So�stik is also limited as it is not
capable to combine volume elements with both nonlinear material and geometric
modelling, to load step thermal actions, and to model the reinforcement in more
than two layers per side. �e input for So�stik is generated from Grasshopper using
a custom IronPython component.

12.7 Conclusions

�e structural design and geometry for the �nal design of a �exibly formed, mesh-
reinforced sandwich shell roof, as part of the NEST HiLo project, has been presented,
and was handed over to Bollinger + Grohmann Ingenieure for the detailed engineer-
ing phase. Construction details will be dependent on further development within
the design team and outcome of the tendering phase.

Speci�c insights from the structural analysis were that

• the determination of wind loads, without the availability of wind tunnel tests
or CFD models, is problematic, given the lack of guidance in building codes
for doubly curved shapes;

• in general, this lack of guidance required the combination of multiple building
codes and recommendations in order to deal with various aspects of this
complex and innovative design;
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Figure 12.24: Visualisation of the interior of the �nal design stage of HiLo.

• the perceived structural bene�ts of a sandwich shell are o�set by di�erential
creep and shrinkage behaviour due to the di�erences in temperature and
relative humidity in the opposite concrete faces;

• a similar observation is made for thermal action and corresponding stresses,
though the e�ect on the load factor may actually be positive;

• it is essential to check the e�ects of both including and excluding thermal
action, as either may act negatively on the load factor;

• the e�ect of creep and shrinkage can signi�cantly reduce the load factor (up
to 35 %), here depending on the exclusion of thermal action, even if the shell
is not considered to be shallow;

• the e�ect of imperfections can do the same (up to 32 %), but inversely de-
pending on the inclusion of thermal action, noting the magnitude of the
imperfection was conservatively chosen;

• the di�erence of ferrocement versus TRC is not structurally signi�cant, though
this is based on properties from literature, and at present there is lack of
guidance from building codes for TRC; and,

• the negatively curved shell has increasing post-buckling capacity, consistent
with literature on hypars.
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�e �nal design shown here is the speci�c result of a sequence of single- and later
multi-criteria evolutionary optimization, evaluating various parameters related to
structural and energy performance, as well as architectural, spatial and constructional
constraints. By the end, the design space had become highly constrained as can be
seen in the Pareto fronts. �is was due to earlier design decisions, limitations set by
the NEST building and strict requirements on energy performance. As a result, the
�nal multi-criteria optimization was only a means to identify a solution that took
all those considerations into account, rather than a design tool that allowed some
freedom of choice, as had been the case for the early, single-criterion optimization.

At the same time, the optimization process and NEST HiLo’s unique geometry do
demonstrate the potential of greater design freedom for anticlastic shell structures
that are �exibly formed. �e �nal construction of NEST HiLo, planned for 2018,
will allow the evaluation of other objectives, particularly cost e�ciency and energy
performance.
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Part VI

Conclusion
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Forming [. . . ] remains the great, unsolved problem of construction of
concrete thin shell roofs. Any and all ideas should be explored, without
prejudice. Time will tell whether signi�cant success might emerge.

— Stefan Jerzy Medwadowski, 1998





CHAPTER THIRTEEN

Conclusions

�in concrete shells are e�cient structural systems to cover large areas, comparable to
steel gridshells in weight, though in terms of carbon footprint, far superior. Because
concrete is the most widely used constructionmaterial, its cement manufacture alone
still accounts for 5 % of global carbon emissions. Concrete shells o�er opportunities
in the aim to reduce these emissions, but since the 1970s they have not been built in
any signi�cant number.

�is thesis addresses the common reason given for their disappearance, the cost
of traditional rigid formworks, and proposes a prestressed cable-net and/or fabric
formwork as a solution. �e opportunities such a formwork a�ords in terms of
geometry have been explored to address another reason: the formal limitations of
traditional shell geometries like the hyperbolic paraboloid. �e wider range of shapes
possible with a �exible formwork, may better cater to current tastes for complex
geometry, as contemporary architecture shows formal similarities to shell structures.

Revival of concrete shells

However, for long-span roofs, concrete shells can undergo only a partial revival
to former glory. Contrary to the golden era of shell structures (1925–1970), concrete
shells will inde�nitely have to compete with prefabricated and mass-produced sys-
tems in general, and with lightweight structures such as tensioned membrane roofs
and steel or timber gridshells. It is unclear whether future disruptive technologies
like 3D printing are an opportunity or threat to the concrete shell.

409



Since a �exible formwork is de�ned as using some lightweight structure as formwork
for concrete, the architectural program must include requirements for such a mate-
rial. Otherwise, the lightweight structure, similarly capable of spanning large areas,
would be the more a�ordable alternative. Many architectural, spatial, functional,
building physical and constructional constraints may require a monolithic, continu-
ous, smooth, �reproof and unobstructed surface that concrete naturally provides.
Indeed, recent freeform projects reveal that architectural programs still exist that
require doubly curved, large span monolithic surface structures.

Geometry of flexibly formed shells

Unfortunately, recent freeform concrete shell shapes have led to designs that were
not as economic as historical examples, even if they were post-rationalized through
structural optimization. �e same is true for recent structures featuring concrete
clad, steel space frames. �ese concerned landmark or signature buildings, and it is
believed that for a wider appeal, shells should be structurally e�cient.

Although someof the thinnest known structures are anticlastic hyperbolic paraboloids,
it has been shown that slight changes to their shape and thickness can vastly improve
their structural performance. Instead of analytical functions, form �nding is an ac-
cepted means of creating e�cient form. Unusually, there are no known thin concrete
shells designed by numerical form �nding, likely due to the problem of formwork.
Here, it has been shown that form �nding can produce both the shape of a �exible
formwork and its resulting concrete shell, in a way that both are structurally and
constructionally informed. �is is especially true if form �nding is used as a shape
generator for optimization. Ideally, such an optimization should include both shape
and thickness variables, and allow boundary conditions to change as well. �e result
is a larger vocabulary for good structural form, and a means by which to realize it.

Economy of flexible formworks

A conventional, sca�olded, rigid timber or milled foam formwork costs about 300-
800 €/m2. An upper limit may be 1000-1200 €/m2, but, in recent examples, perceived
risk and complexity has led to even higher prices during tendering. Barring major
shi�s in economic conditions such as the cost of labour or timber, conventional
timber or milled foam formworks will not be able to bring back concrete shells.
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By contrast, a lightweight structure may cost as little as 150-300 €/m2, and as a
formwork is the cheaper alternative to rigid ones. Savings are not immediately as
high as comparing these numbers suggest. Small-scale �exibly formed prototypes
are already equally competitive to timber formworks, as they can be constructed
for 590-690 €/m2. For large-scale �exible formworks, reported cost savings have
been 25-40 %, and there is further evidence that while cost and weight increase with
scale, these relative savings are independent of scale.

Tolerances of flexible formworks

�e inherent �exibility of the proposed formwork system, raises questions about its
accuracy of construction. It is demonstrated that, at least at small-scale, construc-
tion deviations of a cable-net and fabric formwork are well within the acceptable
limits, such as so-called accidental imperfections for shell structures. Prerequisites
are to design the shell for the loaded state to exclude deformations from the �nal
comparison, so-called best-�t optimization, and to accurately measure and cor-
rect the required prestresses prior to casting. Both experimental and numerical
work show that the deviations are not sensitive to errors in the assumed or applied
magnitude of the loads and material sti�ness. Construction deviations are mainly
determined by errors in the initial geometry and prestresses.

13.1 Contributions

�e contributions in this thesis are related to the primary objectives: to conceptualize
a constructional �exible formwork system; to develop a work�ow for its design; and,
to establish its technical feasibility. Further contributions are divided into the speci�c
topics of form �nding, �exible formworks and shell structures.

13.1.1 Constructional proof of concept

�ree prototypes were built that demonstrate the constructional feasibility of both a
fabric and cable-net formwork at model scale. Several design criteria were developed
for their topology and geometry, intended to reduce required prestresses and oth-
erwise simplify construction. An extensive historical review of �exible formworks
uncovered many obscure and uncited, even large-scale examples.
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13.1.2 Design workflow

A conceptual, computational design process was developed that generates and evalu-
ates a shell geometry, to then determine the prestresses required in a fabric or cable
net to produce that geometry under load, as well as the reaction forces for the external
falsework frame. �e initial mesh geometry from shape generation is maintained
throughout the entire process. Several other strategies are included to minimize
computational cost. For a simple saddle-shaped shell, the �nal implementation
required only eight seconds to compute each individual result.

13.1.3 Technical feasibility

�e second prototype demonstrated that reasonable tolerances can be maintained if
forces are measured and controlled. A parametric study showed that �exibly formed
shells are limited by two factors: the buckling of the shell; and, depending on the
type of formwork, the allowable fabric prestress or practical weight of the cable net.
�e study also revealed that for a square hypar with a slenderness of 150, a fabric
formwork and a cable-net formwork can be applied for spans of up to 15 m and
up to 40 m respectively. �e �nal case study, the �nal design of NEST HiLo, was
succesfully submitted and led to the approval of a building permit.

13.1.4 Form finding

Chapter 5 provides the most comprehensive review of form-�nding methods for
prestressed networks and surfaces thus far. Four categories are proposed: sti�ness
matrix methods; geometric sti�ness methods; dynamic equilibrium methods; and,
minimization methods. Based on this review, a generic form-�nding method is
presented using consistent notation, and explanations are given throughout, under
what conditions it becomes a speci�c well knownmethod. It also produced new force
density formulations for the spring, constant strain triangle, and constant surface
stress triangle elements and their coordinate derivatives. �e resulting frameworkwas
used to compare the computational performance of existingmethods, with geometric
sti�nessmethods generally outperforming the rest. It also revealed identical elements
and solvers, mostly among sti�ness matrix methods, and in work from the past two
decades.
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13.1.5 Flexible formworks

Chapter 3 provides the most comprehensive review of �exible formworks for shell
structures thus far, uncovering obscure and previously uncited work on systems,
related or similar to the proposed cable-net and fabric formwork system. �e review
summarizes reported bene�ts including their potential cost savings.

13.1.6 Shell structures

Chapter 8 is the only known, full description of the recommendations for the stability
analysis of shells (Medwadowski et al. 1979), issued by the International Association
for Shells and Spatial Structures (IASS). It incorporates surrounding literature and
relevant building codes, as the recommendations provide very little guidance on
how to actually apply them. �is description is entirely integrated in the parametric
design process. �is allows for fast evaluation of nonlinear e�ects based only on the
linear critical buckling load.

�is model was applied to small studies on anticlastic shells. �is supported con-
clusions drawn in literature for synclastic shells: that shape optimizations should
include thickness variables (Lee & Hinton 2000a); and, that optimization should be
done both with and without imperfections (Reitinger & Ramm 1995). �ese �ndings
carried over in the case study in Chapter 12.

Results from the case study, NEST HiLo, supported many recommendations from
Medwadowski et al. (1979). Speci�c �ndings were that:

• the perceived structural bene�ts of a sandwich shell are o�set by di�erential
creep and shrinkage behaviour due to the di�erences in temperature and
relative humidity in the opposite concrete faces;

• thermal action and corresponding stresses, may actually, but not necessarily
improve the load factor;

• the e�ect of creep and shrinkage can signi�cantly reduce the load factor (up
to 35 %), even if the shell is not considered to be shallow;

• structural performance was indi�erent to either the use of ferrocement or
textile reinforced concrete (TRC); and,

• this unique negatively curved form has increasing post-buckling capacity,
consistent with literature on hypars.
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13.2 Recommendations

Based on the results, the following recommmendations are made for the design and
construction of �exibly formed shells:

• deformations of the �exible formwork under the weight of the wet concrete
should be taken into account by using best-�t optimization and subsequent
analysis of the required prestresses;

• a strategy must be in place to measure, and ideally correct these prestresses on
site, to a precision in the order of 2-3 % of the maximum prestress;

• provided these two recommendations are met, accidental imperfections can be
calculated according to (Medwadowski 2004) with a formwork factor α = 12
(currently recommended for air-in�ated forms);

• for stability analysis, IASS 1979 recommendations should be updated based
on contemporary limit state design (LSD), possibly using Eurocode EN 1993-1-
6:2007, intended for thin steel shells, as a starting point;

• cable nets should be used in favour of fabrics, until deviations in the built
geometry for the latter are resolved and demonstrated to be manageable;

• several design criteria for the formwork pattern are provided in Section 7.3;
and,

• prestresses should be applied and controlled from both ends of the formwork;
and,

• cutting patterns should be fabricated and measured such that cumulative
errors are avoided.

13.3 Future work

�e following unresolved matters may provide substance for future research.

�e scope of this thesis was limited to negatively curved, i.e. anticlastic shell geome-
tries. Regarding form, the following topics can be explored:
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• anticlastic shapes can be funicular (Rippmann & Block 2013), and geometries
within this overlap could be generated by combining thrust network analysis
with the present work;

• similar work to this thesis can be done for locally or entirely synclastic shells,
which would have to be constructed as a hanging roof, or on an invertible, or
pneumatic formwork (Sections 3.7.1, 3.2.3 or 3.4), or some other method that
introduces out-of-plane pressures; or,

• formworks could also use external objects (Figure 3.33), active-bent elements
(Section 3.5), or some other method that introduces loads or supports into the
�exible formwork surface;

• formworks can be made from �at sheets or otherwise prescribed cutting pat-
tern, possibly manipulated to have wrinkles and folds, and requiring large-
displacement analysis instead of form �nding; while,

• such corrugated shell shapes may have increased buckling resistance and “this
inversion of the fabric’s buckling weakness into the buckling resistance of
the compression shell may be something like a corollary to the fundamental
geometric law of the inversion of funicular tension and compression shapes”
(Section 2.2.1) (West et al. 2011), which can be investigated, for example by
computing cutting patterns from optimized buckling shapes, to establish if a
conventional form-�nding method could have arrived at such a shape; and,

• further work can be done to investigate the validity of applying older ap-
proaches like IASS 1979, which is based on experimental analysis of analytical,
mostly synclastic shapes, to unique geometries produced by form �nding.

Regarding history, it would be prudent to achieve a better understanding why the
observed �rst wave of academic experiments on �exible formworks (1960-1975) did
not avert the general decline of concrete shells.

Regarding (constrained) form �nding,

• it could include beam elements representing the external frame (though by
itself not a novelty); and,

• additional force and initial lengths constraints for fabric cutting patterns;

• a thorough comparison should be made between the constrained nonlinear
least squares approaches by Linkwitz & Schek (1971) with coordinates and
forces as variables and by Schek (1974) with only forces as variables, applied to
the same types of constraints; and,
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• a wider comparison can be made with other constrained form-�nding ap-
proaches, including those based on integration, which generally apply some
type of penalty or barrier function, or use projection methods.

Regarding construction, fabric formwork could be further investigated to resolve the
deviations in the third prototype, starting by �nding methods to accurately measure
prestresses and to produce patterns of uniform sti�ness without the in�uence of
seams. A corollary question is whether precisely tailored cutting patterns can practi-
cally produce non-uniform prestress distribution, or whether fabric formworks are
more restrictive in form than cable nets where each cable segment is easily controlled.

13.4 Final remarks

�ere is an absolute fascination for a structural designer when it comes to thin
shells. �ey are daring objects that, at �rst sight, seem to defy gravity. �e idea of
deriving their shape by form �nding is particularly elegant. It can thus be especially
surprising to realize that no concrete shell has been designed using numerical form
�nding. �ose based on physical form �nding are limited to less than a hunderd
works of Heinz Isler, one more by Sergio Musmeci, and another, currently under
construction, by Frei Otto. It is staggering in fact, given the sheer amount of research
on form �nding and shell structures by dedicated academics within the �eld of
structural geometry; a tribe to which you might perhaps count yourself as well. �e
quotes throughout this thesis, o�ered by expert shell designers at various times in
history, o�en remark that the problem of formwork is central to this discrepancy.
�e concrete shell has even been declared dead. Lives spent in its service have been
thought completely wasted. It is essential to solve the problem of formwork, if we, or
future architects and engineers, are to bear the fruits of all this work. �e case study,
NEST HiLo – the result of the knowledge and collaboration of many – aims to do just
that. It should demonstrate the potential of �exible formworks and in doing so, may
also (re-)acquaint many in the industry with the concrete shell. Its unique geometry
already underlines the potential of greater design freedom for �exibly formed shell
structures; an opportunity that you too are welcome and invited to explore. Once
built, it may well be the world’s �rst computationally form-found, permanent thin
concrete shell structure. Let us hope it is not the last. So, let us end as we began by
repeating a�er me: “�ere are no limits to the shape of concrete.”
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Figure 13.1: NEST HiLo 1:1 roof prototype, developed and constructed by the author’s
colleagues at the Block Research Group and their partners, August 2017, ETH Zurich,

Switzerland.
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List of Symbols

A few symbols represent di�erent parameters depending on the chapter and its
context: δ, t, f andD. �e parameterization of the NEST HiLo roof (Sections 12.2.1
and 12.2.2) also uses several duplicate symbols, which are excluded from this list.

symbol size unit description

α [-] ratio of plan width over length
α1 , α2 , α3 [-] coe�cients for in�uence of concrete strength
αds1 , αds1 [-] coe�cients for type of cement
αf [-] parameter for formwork accuracy
αT [K−1] rate of thermal expansion
β [-] shallowness
βc , βfc , βH , βt [-] coe�cients for creeping, concrete strength devel-

opment, relative humidity and concrete aging
βas , βRH [-] coe�cients for shrinkage and relative humidity
βs [10−3] ratio of radius over thickness
γ a ratio or coe�cient
γk [-] knockdown factor
δ [-] damping parameter
δ [m] de�ection
ε tolerance
εca , εcd , εcs [‰] autogeneous, dying and total shrinkage strain
εy , εu [‰] yield and ultimate strain
ζ [-] ratio of long term load over total load
η [-] reinforcement parameter
θ [rad] angle
λ [-] load factor
λconst , λdecr , λincr [-] factor of safety for constant, decreasing and increas-

ing post-buckling capacity
λh [-] continuation factor for homotopy mapping
λs [-] factor of safety
µ mean value
µk [-] snow shape factor
µrc [-] reinforcement ratio
ν [-] Poisson’s ratio
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symbol size unit description

ξ [-] reinforcement
ρ [kg⋅m−3] density
ρcrp , ρhom ,
ρpl , ρrc

[-] reduction factor for in�uence of creep, imperfec-
tions, plasticity, and cracking and reinforcement

σ [-] standard deviation
σ0 [N⋅m−2] uniform surface stress
σ1 , σ2 [N⋅m−2] �rst and second principal stress
σxx , σyy , σxy =
σx , σy , τxy

[N⋅m−2] stresses in local surface coordinates

σv [N⋅m−2] Von Mises stress
φ [-] creep coe�cient
ψ [-] reduction factor for load combinations
ψ0 ,ψ∞ [-] factor for buckling rigidity in the (un)cracked state
ω [-] step size

ε [-] local Cartesian strains in Voigt notation
λ [-] Lagrange multipliers
λT [-] transformation matrix (Rao 2004, p. 361-3)
σ [3m × 1] [N⋅m−2] local Cartesian stresses in Voigt notation

Λ Lagrangian function
Ψ [3 × 3] [-] transformation matrix, equation (4.32)

e0 eccentricity
fck , fc , fcd [N⋅m−2] compressive strength of concrete, at time of loading,

and dimensioning value
fctm , fctd [N⋅m−2] cracking tensile strength of concrete, and dimen-

sioning value
fy [N⋅m−2] yield strength of steel
g [N⋅m2kg2 gravitational constant
h [m] height or rise
h0 [mm] notional size
i [-] iteration number
i , j [-] branch and node indices
k [N⋅m−1] spring constant or rate
kh [-] coe�cient for notional size
kcrp [-] coe�cient for creep
kt [-] coe�cient for dimension of the tension chord
m,mb ,mt [-] number of branches, of lines, springs and/or bars,

of triangle edges
nrc [-] ratio of Young’s moduli for steel and concrete
n, ni , nf [-] number of nodes, of free nodes, of �xed nodes
p [N⋅m−2] real load
pp [N⋅m−2] plastic failure load under central compression with-

out buckling
ppl [N⋅m−2] plastic failure load
plincr , pucr ,
pu,reinfcr , pplastcr

[N⋅m−2] critical linear buckling load, increasingly modi�ed
for nonlinear e�ects
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symbol size unit description

qp [kN⋅m−2] snow pressure
qs [N] surface stress density
s [m] span
sk [kN⋅m−2] snow pressure
t [m] thickness
t [s] time
u [m] elongation
u, v [m] coordinate di�erence in local directions
w [m] width
w0 ,w′0 ,w

′′

0 [m] initial, calculable and accidental imperfection
x , y [m] local coordinates
z [m] vertical coordinate

e [m × 1] [-] natural strains along the triangle edges
e∗ [m × 1] [-] errors
d [3ni × 1] [N] damping forces
f [m × 1] [N] internal forces along branches
f [3ni × 1] [N] nodal forces in global coordinates
g [3m × 1] [N] internal forces in global coordinates
ks [m ×m] [N⋅m−1] spring constants
l, l0 [m × 1] [m] lengths, initial lengths
m [ni × 1] [kg] masses
p [3n × 1] [N] external forces
pi [3ni × 1] [N] external loads
pf [3nf × 1] [N] reaction forces
q [m × 1] [N⋅m−1] force densities, or tension coe�cients, of branches
qb [mb × 1] [N⋅m−1] force densities of lines, springs and/or bars
qt [mt × 1] [N⋅m−1] force densities of triangle edges
qt,s [mt × 1] [N⋅m−4] surface stress densities of triangle edges
r [3n × 1] [N] residual forces, or out-of-balance forces
s [3 × 1] [N⋅m−2] natural stresses
u, u0 [3m × 1] [m] coordinate di�erences, initial values
u∗ [2m × 1] [m] coordinate di�erences in local coordinates
ū, v̄, w̄ [m × 1] [m] coordinate di�erences in global coordinates
v [3ni × 1] [m⋅ s−1] nodal velocities
wb [mb × 1] [N⋅m−3] extended force densities of branches
x [3n × 1] [m] coordinates
x̄, ȳ, z̄ [n × 1] [m] coordinates in global coordinates
xi [3ni × 1] [m] coordinates of free nodes
x̄i [ni × 1] [m] coordinates of free nodes
xf [3nf × 1] [m] coordinates of �xed nodes
x̄f [nf × 1] [m] coordinates of �xed nodes

A [m2] area
A′ , B′ ,C′ [-] damping constants
Cp [-] wind pressure coe�cient
Ec , Ecr , Es [N⋅m−2] Young’s modulus of concrete, due to creep and of

steel
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symbol size unit description

Ekin [J] kinetic energy
Ese [J] strain energy
F [N] force
H [m] triangle height
Icr [m−3] moment of inertia of a cracked section
K [m−2] Gaussian curvature
L, L0 [m] length and initial length or rest length
Mu [Nm] bending moment at plastic failure
Q [N⋅m−1] force density
Qs [N⋅m−4] surface stress density
R [m] radius
RH [-] humidity
U ,V ,W [m] coordinate di�erence in global directions
X , Y , Z [m] coordinate in global directions

A [m ×m] [m2] diagonal matrix of cross-sectional areas
B strain-displacement matrix
C [3m × 3n] [-] branch-node matrix
C̄ [m × n] [-] branch-node matrix
Ci [3m × 3ni] [-] . . . of free nodes
Ci,b [3mb × 3ni] [-] . . . of free nodes and lines, springs and/or bars
Ci,t [3mt × 3ni] [-] . . . of free nodes and triangle edges
Cf [3m × 3nf ] [-] . . . of �xed nodes
Cf ,b [3mb × 3nf ] [-] . . . of �xed nodes and lines, springs and/or bars
Cf ,t [3mt × 3nf ] [-] . . . of �xed nodes and triangle edges
C̄i [m × ni] [-] . . . of free nodes
C̄i,b [mb × ni] [-] . . . of free nodes and lines, springs and/or bars
C̄i,t [mt × ni] [-] . . . of free nodes and triangle edges
C̄f [m × nf ] [-] . . . of �xed nodes
C̄f ,b [mb × nf ] [-] . . . of �xed nodes and lines, springs and/or bars
C̄f ,t [mt × nf ] [-] . . . of �xed nodes and triangle edges
D [3ni × 3ni] [kg⋅ s−1] damping matrix
D constitutive matrix
Di [3ni × 3ni] [N⋅m−1] geometric sti�ness matrix of free nodes
Df [3nf × 3nf ] [N⋅m−1] geometric sti�ness matrix of �xed nodes
E [m ×m] [N⋅m−2] diagonal matrix of Young’s moduli
F [m ×m] [N] diagonal matrix of internal forces
G Jacobian matrix
H [3 × 3] or,[3mt × 3mt] [m2] transformation matrix, equation (4.32)
I [-] identity matrix
K [3ni × 3ni] [N⋅m−1] sti�ness matrix
Ke ,Ke,l ,Ke,nl [3ni × 3ni] [N⋅m−1] elastic sti�ness matrix, linear and nonlinear part
Kg ,Kg,l ,Kg,nl [3ni × 3ni] [N⋅m−1] geometric sti�ness matrix, linear and nonlinear

part
Kmod [3ni × 3ni] [N⋅m−1] modi�ed sti�ness matrix
Ks [m ×m] [N⋅m−1] diagonal matrix of spring constants
L, L0 [m ×m] [m] diagonal matrix of lengths and of initial lengths
M [3ni × 3ni] [kg] mass matrix
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symbol size unit description

M̄ [ni × ni] [kg] mass matrix
N [3 × 3] [-] helper matrix, equation (4.13)
P [n × 3] [N] external forces
Pi [ni × 3] [N] external loads
Pf [nf × 3] [N] reaction forces
Q [3m × 3m] [N⋅m−1] diagonal matrix of force densities of branches
Q̄ [m ×m] [N⋅m−1] diagonal matrix of force densities of branches
Q̄b [mb ×mb] [N⋅m−1] . . . of force densities of lines, springs and/or bars
S [2m × 2m] [N⋅m−2] block diagonal matrix of element stresses
T [3ni × 3ni] [-] transformation matrix
U,U0 [3m ×m] [m] coordinate di�erences, initial values
U∗ [2m ×m] [m] coordinate di�erences in local coordinates
Ū, V̄, W̄ [m ×m] [m] diagonal matrix of global coordinate di�erences
W [m ×m] [-] damping or scaling matrix
W1 [m ×m] [-] weighting matrix
W2 [ni × ni] [-] weighting matrix
Wb [mb ×mb] [N⋅m−3] diagonal matrix of extended force densities
X [n × 3] [m] coordinate matrix
Xi [ni × 3] [m] coordinate matrix of free nodes
Xf [nf × 3] [m] coordinate matrix of �xed nodes
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